کاربرد روش L1 – تقریب در معادلات انتگرال تکین
- مقدمه: معادلات انتگرال را میتوان با استفاده از فن LP – تقریب (به ویژه L1 تقریب) به طور موثری حل کرد. در این متن فن کلی را مورد بحث قرار میدهیم و سپس آن را با حل چند معادله انتگرال مختلف توضیح میدهیم. علاوه برامتیازات دیگر، این روش به طور موفقیت آمیزی در مورد معادلات انتگرال تکین و همین طور معادلات انتگرال قویاً تکین (نظیر انتگرال های آدامار یا متناهی – قسمت) تعمیم داده شده و به کار رفته است. در بحث حاضر، مروری بر این مطالعه ارائه میشود.
2- مقدمات ریاضی :
به طور کلی هدف این متن عبارت است از کاربرد فن LP- تقریب در حل یک معادله انتگرال فردهولم (خطی یا غیر خطی) نوع اول یا دوم به صورت
در معادلة بالا تابع هدایتگر و هسته K توابعی معلوم اند، در حالی که تابع مجهول است که باید آن را بیابیم پارامتر نیز معلوم است. مساله کلی LP- تقریب پیوسته را میتوان به صورت زیر فرمول بندی کرد:
تابع f معین روی یک بازة حقیقی مانند x همراه با یک تابع تقریب مانند F(A)، که به متغیر n پارامتری A=(a1 , …,an) در Rn وابسته است، مفروض اند.
در این صورت مساله LP- تقریب پیوسته به این معنی است که باید برداری مانند به گونه ای بیابیم که به ازای هر رابطة :
برقرار باشد.
جنبة اصلی مساله که باید مورد بحث واقع شود فرمول بندی مجدد مساله معادله انتگرال به صورت یک مساله LP- تقریب است. برای این منظور، فرض کنیم بتوان تابع جواب را با تابع F(A)، که ممکن است خطی یا غیر خطی باشد، تقریب زد. اگر این تقریب را در معادله انتگرال بگذاریم، رابطة زیر به دست میآید:
در آن صورت مساله تقریب را میتوان بر حسب LP- نرم به صورت:
بیان کرد که در آن F(A,x) نسبت به A روی Rn و نسبت به x روی [a,b] تعریف شده است. توجه داشته باشید که میتوان عبارت
را تابعی مانند تلقی کنیم که فقط به A بستگی دارد. پس میتوان مسأله تقریب را به عنوان یک مسأله مینیمم سازی غیر مقید وابسته به n متغیر an,...,a1 در نظر گرفت. بنابراین، J فقط باید نسبت به این متغیرها مینیمم شود. در نتیجه، با حل مسأله مینیمم سازی بالا امکان حل تقریبی معادله انتگرال وجود دارد.
برای مطالعة درباره جزئیات این فن (و از جمله آنالیز ریاضی) مراجع [19] , [18] تالیف De Klerk را ببینید.
در این مرحله دو تفسیرزیر ضروری اند:
مقادیر مخلتف P را میتوان مورد استفاده قرار داد. برای مثال به ازای P=1 مسأله منجر میشود به مسأله کمترین قدر مطلق و به ازای P=2 مسأله منجر میشود به مسألة کمترین مربعات. دلیلی وجودندارد که مقادیر مثبت دیگر P را در نظر نگیریم. حالت P=2 را بیشتر می شناسیم، در حالی که حالت P=1 کمتر آشناست. بنابراین احساس میشد که این حالت باید حاوی چالش های عددی جالبی (در رابطه با قدر مطلقی که در انتگرالده ایجاد می شود) باشد. توجه داشته باشید که خطی یا غیر خطی بودن انتگرالده بالا نسبت به A بستگی به تابع تقریب F(A) و هسته K دارد. در روش عددی ای که در اینجا مورد بحث قرار میگیرد تمایز خاصی بین خطی یا غیر خطی بودن قائل نمیشویم.
3- شیوة عددی و مثال ها :
فن عددی در اصل از دو شیوة عددی تشکیل شده است، یعنی شیوة مینیمم سازی و شیوة انتگرال گیری.
مینیمم سازی با استفاده ازیک الگوریتم استاندارد بهینه سازی انجام میگیرد. الگوریتم UMPOL در IMSL Library که بر پایة روش «سیمپلکس داون هیل» از نلدر و مید (به مثال [37] تالیف Press مراجعه کنید)، که گر چه زیاد سریع نیست اما این مزیت را دارد که بسیار قوی است و به مشتق گیری ها نیازی ندارد. در واقع ماشین سر به زیری است که معمولاً مقدار مینیمم یک تابع را به درستی مییابد . همچنین
De Klerk در [20] متذکر شده است که روش لووس- جاکولا [34] نیز روشی قوی است که به مشتق گیری ها نیازی ندارد و بررسی بیشتر جواب هایی که با بهره گیری ازاین روش بدست می آیند را مفید دانسته است.
انتگرال گیری عددی با استفاده از فن کوادراتور اتوماتیکی که ونتر و لاوری [3] با یک انتگرالده به صورت g(|f(x)|) آورده اند، انجام میشود. برای بدست آوردن این شیوه این محققین رویة انتگرال گیری تطبیقی استاندارد QAGE را تغییر داده اند (از QUAD PACK تالیف [35] Piessens ). در حین فرایند انتگرال گیری، با استفاده ازمقادیر موجود برای تابع، صفرهای تابع پیدا میشوند که از آنها (صفرهای تابع) به عنوان نقاط تقسیم در انتگرال گیری استفاده میکنیم.
در [20] ذکر شده است که ونتر ولاوری این روش را با موفقیت بالایی امتحان کرده اند، همچنین در پایان نامه دکتری ونتر نیز از بکارگیری این روش نتایج خوبی بدست آمده است [8].
De Klerk در [18] نتایج رضایت بخشی را با استفاده از این استراتژی تقریب بدست آورده است.
بر خلاف بسیاری روش های دیگر، با استفاده از روشی تقریبی نظیر روش یاد شده، در ساختن جواب نیز آزادی عمل بیشتری داریم (مثلا می توان توابع گویا و توابع مثلثاتی را بکار برد).
با اینکه داشتن تجربه در ارتباط با انتخاب یک تابع تقریب لازم است اما این امر موجب کنار گذاردن روش مذکور نمی شود.
De Klerk با در نظر گرفتن مثال های زیر، برخی از نتایج اصلی سال های گذشته را به بحث میگذارد.
مثال (1- ) پارامتر به سمت یکی از مقادیر ویژه مسأله میل میکند.
هسته جدایی پذیر زیر را در نظر بگیرید، داریم :
که در آن دو مجموعه از توابع مستقل خطی هستند.
در این حالت معادله انتگرال فردهولم به طور کلی یک و فقط یک جواب دارد. تنها استثنا وقتی است که یکی از مقادیر ویژه هسته را به خود میگیرد که در این حالت مسأله جواب ندارد (Tricomi [9]) . مثال بعد کارایی فن مذکور را نشان میدهد. معادله انتگرال فردهولم نوع دوم زیررا در نظر بگیرید.
تمرینات انتگرال به همراه پاسخ ها
در این فایل چندین تمرین انتگرال به همراه پاسخ آنها در 32 صفحه آماده گردیده است که نمونه ای از این تمرینات را در زیر مشاهده می کنید: