معرفی و بررسی عوامل موثر در میزان نفوذ آبهای زیرزمینی به داخل تونلهای معدنی
چکیده :
جریان آب زیرزمینی به داخل تونلها همیشه یک مشکل فنی و محیطی عمده برای سازه های زیرزمینی بوده است . پیش بینی جریان آب زیرزمینی با استفاده از ابزارهای تحلیلی و عددی اغلب به علت عمومیت دادن و مختصر سازی پارامترهای مهم ، خصوصا“ در محیطهای نامتجانس همانند سنگهای متبلور ناموفق و بدون نتیجه موثر، مانده است . برای مشخص کردن پارامترهایی که در این سنگها جریانهای آب را کنترل می کنند، یک تجزیه تحلیل آماری اصولی در یک تول که در سنگهای متبلور سخت، در جنوب سوئد قرار دارد ، انجام شده است . این پارامترها شامل ، متغیرهای مهم عارضه ای ، فنی و زمین شناسی در سنگهای متبلور سخت و همچنین در پوشان سنگها می باشند. مطالعات مشخص کرد که عوامل زیادی به خصوصیات سنگ و همچنین خصوصیات پوشان سنگ وابسته می باشند. همچون تعداد شکافها، ضخامت پوشان سنگ ، نوع خاک و میزان مواد پرکننده در بین سنگها که مقدار چکه و نشت را کنترل می کنند. این مطالعات نشان میدهد که یک تفاوت آشکار بین پارامترهایی که نشتهای عمده و نشتهای جزئی را کنترل می کنند وجود دارد. نشتهای کوچکتر بیشتر به زهکشی توده سنگ مرتبط می باشد. در صورتیکه نشتهای عمده مشخصا“ به پارامترهای مختلف در پوشان سنگ بستگی دارند. در صورتی که پوشان سنگ وتوده سنگ بعنوان یک سیستم مشترک مطرح شوند، پیش بینی جریانهای آب زیرزمینی احتمالا“ با خطا همراه است .
فهرست علائم اختصاری بکار برده شده در متن :
1) V. L.F: (Very low Frequenxy )
2) A NOVA : (Analysis Of Variance )
3) GIS : (Geographic Information System )
4) K- W : (Kruskal – WALLIS )
5) K-T : (Kendall Tau )
1- مقدمه . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2- سنگ ها . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 4
3- مشکلات ناشی از نشت آب . . . .. . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . . . 5
4- آب در روزنه ها و شکاف ها . . . . . . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . 5
4-1- چرخه آب شناختی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4-2- روزنه داری نخستین و ثانوی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4-3- سفره آب زیرزمینی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4-4- واحد های زمین شناختی آبده ، نیم آبده و نا آبده . . . . . . . . . . . 7
5- حرکت آبهای زیرزمینی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6- قانو ن دارسی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7- ضریب نفوذ پذیری یا هدایت هیدرولیکی . . . . . . . . . . . . . . . . . . . . 8
8- ضریب انتقال . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
9-نشست ناشی از زهکشی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
10- حل شدن سنگ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
11- رسانندگی هیدرولیک سنگ ها . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
12- نگرشهای هیدرودینامیکی در مورد سنگها . . . . . . . . . . . . . . . . . . . 13
13- تونل بولمن در جنوب سوئد . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
14- زمین شناسی و فرایند نشت در تونل بولمن . . . . . . . . . . . . . . . 22
15- پیش بینی جریانها و جمع آوری اطلاعات جربان های روبه داخل آبهای زیرزمینی در تونل بولمن . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
16- اطلاعات ورشهای بکاربرده شده درمطالعه موردی تونل بولمن 28
17-مطالعه جریانات ورودی آب با استفاده از نقشه های تونل. . . . . 32
18-نتایج بدست آمده . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
18-1- متغیرهای توپوگرافی . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 36
18-2- متغیرهای خاک . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
18-3- متغیرهای سنگ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
18-4- متغیرهای تکنیکی . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 38
18-5- متغیرهای ژئوفیزیکی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
19-آنالیزرگراسیون مرکب چندگانه متغیرهای مستقل درارتباط با تونل بولمن . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
19-1-آنالیز رگرسیون درمقیاس 100 متری تونل بولمن . . . . . . . 45
19-2-آنالیز رگرسیون درمقیاس 500 متری تونل بولمن . . . . . . . . 46
20-بحث و بررسی نتایج بدست آمده از مطالعه موردی تونل بولمن48
21-نتیجه گیری . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 58
22-معادل فارسی واژه های انگلیسی بکار برده شده درمتن . . . . . . 58
23- منابع . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
شکل 3: مفاهیم سفره آب . . . . . . . . . . . . . . . . . . . . . …. . . . . . . . . . . . . . . 6
شکل 4: نفوذ پذیری هیدرولیکی سنگها و توده های سنگی . . . . . . . . . 11
شکل 5: رابطه بین نفوذ پذیری و عرض شکستگی . . . . . . . . . . . . . . . . 12
شکل 6: نمودار همبستگی . . . . . . . . . . . . . . . . . . . . . . . . . ..... . . . . . . . . . . . 19
شکل 7: جهت اصلی تمام درزه ها و ترکها. . . . . . . . . . . . …. . . . . . . . . . . 23
شکل 8: توجیه اصلی تمام ترکهای دارای نشت . . . . . . . . … . . . . . . . . . 23
شکل 9: توزیع فراوانی ترکها و ترکهای دارای نشت . . … . . . . . . . . . . . 24
شکل 10: توزیع هندسی شکافهای با نشت جزئی . . . . . … . . . . . . . . . . . 34
شکل 11: توزیع هندسی شکافهای با نشت عمده . . . . . …. . . . . . . . . . . 34
شکل 12: توزیع لگاریتمی نرمال ترکهای با نشت جزئی …. . . . . . . . . . 34
شکل 13: توزیع فراوانی شکافهای با نشت عمده . . . . . . ….. . . . . . . 36
شکل 14: نتایج کراسکال والیز آنووابه وسیله رتبه بندی. . . . …. . . . . 43
جدول 1: فهرست متغیرهای هیدرولوژی ، توپوگرافی و تکنیکی که در تونل بولمن مورد تجزیه و تحلیل آماری قرار گرفته اند.. . . . . . . . . . . 30
جدول 2: نتایج عمده همبستگی متغیرهای مختلف در ارتباط با نشت عمده و جزئی شکافها . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
جدول 3: نتایج حاصل از آنالیز واریانس کراسکال والیزآنووا متغیرهای توپوگرافی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
جدول 4: نتایج حاصل ازآنالیزواریانس کراسکال والیزآنووامتغیرهای خاک37
جدول 5: نتایج حاصل ازآنالیزواریانس کراسکال والیزآنووامتغیرهای سنگ38
جدول6:نتایج حاصل ازآنالیزواریانس کراسکال والیزآنووامتغیرهای تکنیکی39
جدول7:نتایج حاصل ازآنالیزواریانس کراسکال والیزآنووامتغیرهای ژئوفیزیکی
39
جدول8: فرمول های رگرسیون خطی برای نشتهای عمده و جزئی در مقیاس 100 متری . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
جدول 9: فرمول های رگرسیون خطی برای نشتهای عمده وجزئی در مقیاس 500 متری . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1- مقدمه :
نشت آب به داخل تونلها و حفریات سنگی مشکل فنی عمده ای برای این سازههای زیرزمینی می باشد. تراوش جریانهای آب به داخل سازه زیرزمینی باعث افزایش چشمگیر جهانی در هزینه های ساخت آن شده است. در ابتدا پمپاژ آبی که به درون سازه تراوش می کندامری ضروری است . سپس افزایش تعداد نگهداری هاو ایجاد پیش حفریات که هرکدام از آنها مشکلاتی را به همراه دارندباید اتخاذ شود. یک قسمت قابل توجه از هزینه ها در هنگام حفر تونل در سوئد مربوط به عملیات پیش دوغاب ریزی[1] است که برای محدود کردن جریان های آب ضروری می باشد. همچنین جریانهای زیاد آب به داخل تونل می تواند به طور جدی نیروی کاررا تحت خطر قرار دهد وموارد مطالعاتی بسیاری و گزارشهای متعددی درباره از دست رفتن زندگی افراد درج شده است . همچنین در حضور جریانهای بزرگ آب ، شرایط کارکردن سخت تر واز سرعت کار کاسته می شود. نتیجه محیطی مستقیم جریانهای آب ، افت فشار سطوح آب زیرزمینی در لایه های آبدار و سفرههای آب زیرزمینی می باشد. افت فشار[2] طویل المدت بر نمو گیاهان ، منابع آب زیرزمینی و همچنین بر شیمی آبهای زیرزمینی تاثیر می گذارد (13). نشستی که در نتیجه کاهش فشار آب در لایه های خاکی اتفاق می افتد به ساختمانهای روی سطح زمین خسارت وارد می کند ( شکل 1) . به دلیل مشکلاتی که جریانهای ورودی آب ایجاد می کنند تلاش شده تا حداقل جریانهای ورودی عمده تعیین محل و پیش بینی شوند. پیش بینی های صحیح و موفق در انتخاب مسیر نهفته تونل وشیوه ساخت آن و همچنین در تشخیص شعاع تاثیر[3] و مخروط فرو رفتگی[4] یا افت فشار که توسط جریانهای ورودی ایجاد شده است کمک می کند. این مسائل درکاهش هزینههای ساختمانی و زیست محیطی موثر است امروزه مفهوم پیش بینی به مقدار زیادی به قابلیت اطمینان در مدل سازی جریان اب زیرزمینی وابسته می باشد . در سنگهای شکاف دار و با تخلخل کم مانند سنگهای اذرین سخت تلاشهای فراوانی در جهت توسعه روشهایی که سعی بر در آوردن خصوصیات پیچیده هندسی شکافها و درزه ها مطابق مدل یعنی می باشد انجام گرفته است (11). همچنین روشهای دیگری برای حل مشکلات جریان در سنگ شکاف دار همانند آنالیز ها و تجزیه تحلیلهای بدون بعد[5] ، شبیه سازی اتفاقی[6] و مدل فاقد کیفیتهای ظاهری و واقعی بکار برده می شوند (14) . به طور متناوب و برحسب نیاز روشهای متجانس و خواص موثر بر مدلسازی شکافهای مشخص استفاده شده است (7). به هرحال اغلب حتی با قابلیت استفاده خوب داده ها بدرستی نشان داده شده که مدلهای عددی بیشتر روی یک مقیاس جهانی پیش بینی های موفقی رامی توانند خلق کنند(8) . بعلاوه مدلسازی عددی دقیقا“ آخرین مرحله از یک عملیات پیش بینی کننده می باشد واین نتیجه منحصرا“ به مدل ادراکی[7] که در یک مرحله خیلی مقدماتی از اتصال اطلاعات اصلی مختلف بسط داده شده است وابسته می باشد. بنابراین اگر دریک عملیات پیش بینی کننده در ابتدا کاملا درک شود که چه چیزی و چگونه باید پیش بینی شود احتمال قوی تری برای موفقیت وجود دارد (9). اگر در بعضی مواقع معرفهای عددی توده سنگ برای پیش بینی کردن ناکافی باشند ، به این دلیل است که بعضی از فاکتورهای مهم در پیش بینی جریانها به حساب آورده نشده اند . هدف این مقاله نشان دادن رابطه آماری پارامترهای زمین شناسی در کنترل کردن جریانهای آب به داخل تونلها می باشد. نظر به اینکه توده های سنگ سخت معمولا“ دارای تخلخل خیلی کم می باشند. هنگامی که مخازن آبهای زیرزمینی در قسمت پوشان سنگ[8] یا کمر بالا قرار گرفته اند ، نشت از شکافها و درزهای سنگها صورت می گیرد . از این رو، بروی فاکتورهای مربوط به کمر بالا نیز ، مطالعات و آنالیز صورت گرفته است .
2-
20 – بحث وبررسی[9] نتایج بدست آمده ازمطالعه موردی تونل بولمن :
درحال حاضر روشهای متعدد ی برای پیش بینی نشت آب در تاسیسات زیرزمینی حفر شده در سنگ های سخت بکار گرفته شده است. درطول 2 تا3 دهة گذشته تلاشهای زیادی برای بسط و توسعه مدلهای پیچیده 2 بعدی و 3 بعدی صورت گرفته است . با این وجود میان روشهای موجود هیچیک به طور عمومی به عنوان روش قابل اعتماد به رسمیت شناخته نمی شود. این می تواند بطور ضمنی به این معنی باشد که برخی نکات مهم در پروسة پیش بینی هنوز درنظر گرفته نشده است. یکی از محدودیتهای عمده درطول پیش بینی ، ممکن است این باشدکه تنها پارامترهای سنگ در نظر گرفته می شودو پارامترهای هیدرژئولوژی نظیر ضخامت پوشان سنگ و ارتباط با منابع تخلیة آب نادیده گرفته می شود. هدف از مطالعة حاضر، عمدتا“ بررسی معنی دار بودن آماری پارامترهای مختلف سنگ ، توپوگرافی، خاک و تکنیکی بود. بهمنظور تشریح رویدادهای نشت در حال وقوع درطول 25 کیلومتر از تونل بولمن که یک تونل صخره ای سخت در جنوب سوئد است ، توزیع فراوانی تعداد نشتها درطول مقاطع 100 متری در تونل بولمن بوسیلة توزیع هندسی بهتر تخمین زده می شد. اما با درنظرگرفتن تعداد متوسط شکافهای درحال نشت ، درفواصل 500 متری با مقاطع 100 متری پشت سرهم، فرم توزیع
ارزیابی پتانسیل روانگرایی در محدوده سازه های زیرزمینی با استفاده از زمین آمار مورد مطالعاتی، مسیر خط دو مترو تبریز
روانگرایی خاکها در اثر بارگذاریهای دینامیکی همواره نگرانی مهمی برای کارهای مهندسی ژئوتکنیک بوده است که در طی آن خاک بصورت آنی مقاومت برشی خود را از دست میدهد. وضعیت لرزهخیزی شهر تبریز و نیز نوع دانهبندی خاکهای واقع در مسیر خط دو متروی تبریز و عمق آب زیرزمینی در نقاط مختلف آن، این نهشتهها را مستعد روانگرایی ساخته است. عملکرد لرزهای سازههای زیرزمینی حفر شده در خاکهای با استعداد روانگرایی در طی زمینلرزههای گذشته، ارزیابی پتانسیل روانگرایی نهشتههای مذکور را ضروری میسازد. مدلهای تجربی موجود برای این امر، ارزیابی پتانسیل روانگرایی را منحصرا در نقاط نمونهبرداری شده امکانپذیر میسازند. در مطالعه حاضر، در ابتدا با توجه به در دسترس بودن دادههای حاصل از SPT، از معیار یود و همکاران برای تحلیل پتانسیل روانگرایی در اعماق حاوی اطلاعات مورد نیاز استفاده شد. با توجه به اینکه این معیار برای خاکهای حاوی محتوی ریزدانه بالا پیشبینی محافظهکارانهای ارائه میدهد، برای محاسبه فاکتور ایمنی در برابر روانگرایی این نوع خاکها، از معیارهای بری و سانشیو؛ و اندروس و مارتین نیز استفاده شد. پس از آن، برای تخمین مقادیر این پارامتر در نقاط اندازهگیری نشده، از روش زمینآمار استفاده شد و در نهایت مقاطع دو بعدی در دو راستای XY و YZ ارائه گشت.
واژههای کلیدی: روانگرایی، مقاومت برشی، سازههای زیرزمینی، مدل یود و همکاران، معیار بری و سانشیو، معیار اندروس و مارتین، زمینآمار.
فهرست مطالب
فصل اول: مقدمه و اهداف تحقیق. 1
فصل دوم: پدیده روانگرایی و روشهای مختلف بررسی آن. 5
2-1- پدیده روانگرایی. 6
2-2- مکانیزم روانگرایی. 6
2-3- آسیبهای ناشی از روانگرایی خاکها 7
2-3-1- آسیبهای سطحی. 8
2-3-2- آسیبهای ناشی از روانگرایی بر سازههای زیرزمینی. 8
2-3-2-1- انواع خرابیهای سازههای زیرزمینی در اثر وقوع روانگرایی. 9
2-3-2-2- راهکارهای مقابله با خرابیها 11
2-4- روشهای مختلف ارزیابی پتانسیل روانگرایی در یک عمق معین از نهشتههای خاکی. 13
2-4-1- روشهای آزمایشگاهی موجود برای ارزیابی پتانسیل روانگرایی. 14
2-4-2- روابط تجربی موجود برای ارزیابی پتانسیل روانگرایی. 17
2-4-2-1- روابط تجربی بر مبنای دادههای حاصل از آزمون نفوذ استاندارد 17
2-4-2-1-1- آزمون نفوذ استاندارد 18
2-4-2-1-2- روش سید و ادریس... 20
2-4-2-1-3- روش ایواساکی و همکاران (1978). 25
2-4-2-2- روابط تجربی بر مبنای دادههای حاصل از آزمون نفوذ مخروط. 27
2-4-2-2-1- آزمون نفوذ مخروط. 27
2-4-2-2-2- روش رابرتسون و وراید (1998) 28
2-4-2-3- روابط بر مبنای سرعت موج برشی. 28
2-4-2-4- مقایسه دقت پیشبینی روابط تجربی . 29
2-5- بررسی تغییرات پتانسیل روانگرایی در دو بعد و نیز در فضا 29
2-6- معیارهای موجود برای بررسی استعداد روانگرایی خاکهای لایدار و رسدار 30
2-7- جمعبندی. 31
فصل سوم: مبانی زمینآمار 32
3-1- مقدمه 33
3-2- واریوگرام 33
3-2-1- کلیات.. 33
3-2-2- واریوگرام جهتی و غیر جهتی. 37
3-2-3- روند. 39
3-2-4- ناهمسانگردی. 39
3-2-5- مدلسازی واریوگرام 40
3-2-5-1- مدل کروی. 40
3-2-5-2- مدل گوسی. 41
3-2-5-3- مدل نمایی. 41
3-2-5-4- مدل خطی بدون سقف.. 42
3-2-5-5- مدل خطی سقفدار 42
3-2-5-6- مدل سینوسی (اثر سوراخ) 43
3-3- واریانس تخمین. 44
3-4- کریجینگ... 45
3-4-1- مقدمه 45
3-4-2-انواع کریجینگ... 45
3-4-2-1- انواع کریجینگ بر حسب مشخصات ساختار فضایی. 45
3-4-2-2- انواع کریجینگ بر حسب حجم پایه 47
3-4-2-2-1- کریجینگ نقطهای. 47
3-4-2-2-2- کریجینگ بلوکی. 47
3-4-2-3- سایر انواع کریجینگ... 47
3-5- مراحل تخمین به روش زمین آماری 47
3-6- مطالعات پیشین صورت گرفته در خصوص استفاده از زمینآمار در ارزیابی پتانسیل روانگرایی 49
3-6-1- ییگوسگیل و همکاران (2006) 49
3-6-2- داوسون و بایز (2005) 50
3-7- جمعبندی 52
فصل چهارم: معرفی مسیر خط دو مترو تبریز. 53
4-1- مقدمه. 54
4-2- وضعیت لایههای زیرسطحی مسیر خط دو مترو تبریز. 54
4-3- زمین شناسی عمومی منطقه. 57
4-4- تکتونیک و لرزهخیزی منطقه. 58
4-5- وضعیت آب زیرزمینی در محدوده مورد مطالعه 59
4-6- آزمایشهای صحرایی صورت گرفته در ناحیه مورد مطالعه 59
4-7- آزمایشهای آزمایشگاهی صورت گرفته در ناحیه مورد مطالعه 59
4-8- جمعبندی. 60
فصل پنجم: تعیین پتانسیل روانگرایی رسوبات مسیر خط دو مترو تبریز با استفاده از زمینآمار 61
5-1- مقدمه 62
5-2- آمادهسازی و تحلیل آماری دادهها 62
5-3-واریوگرافی. 66
5-3-1- محاسبات واریوگرام تجربی و برازش مدل. 66
5-3-2- اعتبارسنجی دادهها 68
5-4- تخمین کریجینگ... 69
5-5- جمعبندی. 75
فصل ششم: نتایج و پیشنهادها 76
6-1- نتایج. 77
6-2- پیشنهادها 78
منابع و مآخذ. 79
پیوست.. 83
فهرست اشکال
شکل 2-1- شماتیک رفتار ذرات خاک الف) قبل، ب) بعد، ج) حین روانگرایی. 7
شکل 2-2- خرابی سطحی ناشی از حرکت رو به بالای یک سازه زیرزمینی. 8
شکل 2-3- وضعیت تونل الف) قبل، ب)پس از وقوع روانگرایی خاکهای اطراف آن. 10
شکل 2-4- نمایش نحوه نصب دیوارهای آببند به منظور کاهش اثرات روانگرایی خاکهای اطراف تونل. 12
شکل2-5- وضعیت برکنش سازه و آماس سطح ناشی از آن الف) قبل، ب) بعد از نصب دیوارهای آببند. 12
شکل 2-6- تاثیر نصب دیوار آببند بر جابجایی قائم سازه زیرزمینی. 13
شکل 2-7- وضعیت تنش در یک جزء کوچک خاک در صحرا الف) قبل از وقوع زلزله ب) پس از زلزله 14
شکل 2-8- حداکثر تنش برشی در یک عمق برای ستون خاک صلب.. 16
شکل 2-9- ناحیه روانگرایی در صحرا 16
شکل 2-10- نمونهای از روشهای انجام SPT و نیز تجهیزات مورد استفاده در آن. 19
شکل 2-11- فلوچارت تحلیل مربوط به روش یود و همکاران (2001) 21
شکل 2-12- رابطه بین بزرگای گشتاوری و سایر مقیاسهای بزرگا 22
شکل 2-13- محدوده خاکهای روانگرا 30
شکل 3-1- اصول محاسبه واریوگرام 34
شکل 3-2- نمونهای از یک واریوگرام 35
شکل 3-3- رابطه بین واریوگرام و کوواریوگرام 37
شکل 3-4- محدوده مجاز انتخاب نمونهها برای رسم واریوگرام جهتی. 38
شکل 3-5- مدل واریوگرام ناهمسانگردی هندسی. 39
شکل 3-6- مدل واریوگرام ناهمسانگردی منطقهای. 40
شکل 3-7- نمونهای از یک واریوگرام مدل کروی. 41
شکل 3-8- نمونهای از یک واریوگرام مدل گوسی. 41
شکل3-9- نمونهای از یک واریوگرام مدل نمایی. 42
شکل 3-10- مدل خطی بدون سقف.. 42
شکل 3-11- مدل خطی سقفدار 43
شکل 3-12- نمونهای از یک مدل واریوگرام مدل سینوسی. 43
شکل 3-13- نمونهای از نقشههای استعداد روانگرایی ترسیم شده با استفاده از ترکیب کریجینگ معمولی و GIS. 51
شکل 3-14- احتمال وقوع روانگرایی برآورد شده در بالبوئا 52
شکل 4-1- مسیر خط دو بر روی نقشه تبریز. 55
شکل 4-2- بخشی از مقطع زمینشناسی خط دوی متروی تبریز 57
شکل 4-3- نمونهای از دادههای حاصل از آزمونهای نفوذ استاندارد انجام گرفته در منطقه 59
شکل 5-1- الف) هیستوگرام؛ ب) نمودا احتمال نرمال مقادیر فاکتور ایمنی در برابر روانگرایی. 64
شکل 5-2- الف) هیستوگرام؛ ب) نمودا احتمال نرمال مقادیر تبدیل یافته فاکتور ایمنی در برابر روانگرایی 65
شکل 5-3- نمودار جعبهای مقادیر تبدیلیافته الف) قبل از حذف؛ ب) بعد از حذف مقادیر خارج از ردیف 65
شکل5-4- واریوگرام تجربی در راستای XY و مدل نمایی برازش شده به آن 67
شکل 5-5- واریوگرام تجربی در راستای محور Z به همراه مدل برازش شده به آن 68
شکل 5-6- نمودار همبستگی مقایر اصلی و تخمینی فاکتور ایمنی در برابر روانگرایی 69
شکل 5-7-مقطع توپوگرافی مربوط به مسیر خط دو مترو تبریز 70
شکل 5-8- نقشه دو بعدی مقادیر تخمینی پارامتر فاکتور ایمنی در راستای XYو در ارتفاع؛ الف) 1329، ب) 1341، ج) 1365، د)1377 متری 72
شکل 5-9- نقشه دو بعدی واریانس خطای تخمین مقادیر فاکتور ایمنی؛ در ارتفاع الف) 1329پ، ب) 1341، ج) 1365، د)1377 متری 73
شکل 5-10- نقشه دو بعدی واریانس خطای تخمین مقادیر فاکتور ایمنی در طول؛الف) 611361، ب) 612061، ج) 613261 متری 74
شکل 5-11- نقشه دو بعدی واریانس خطای تخمین مقادیر فاکتور ایمنی؛ در طولالف) 611361، ب) 612061، ج) 613261 متری 75
فهرست جداول
جدول 2-1- تعداد نوسانات تنشهای مهم مربوط به .... 16
جدول 2-2- ضرایب اصلاح عدد SPT برای روشها و دستگاههای مختلف صحرایی. 24
جدول 2-3- معیار اندروس و مارتین. 31
جدول 2-4- معیار بری و سانشیو. 32
جدول 4-1- زلزله های روی داده در اثر فعالیت گسل شمال تبریز. 58
جدول 5-1- خلاصه پارامترهای آماری مقادیر فاکتور ایمنی در برابر روانگرایی. 66
جدول 5-2- مختصات مربوط به دو نقطه ابتدا و انتهای مسیر مورد مطالعه 70
احداث تونل مترو و برخورد با مشکلات سفره آبهای زیرزمینی در آبرفتهای جنوب دشت تهران
این محصول در قالب فایل word و در 83 صفحه تهیه و تنظیم شده است.
توجه :
شما می توانید با خرید این محصول فایل " قلق های پایان نامه نویسی (از عنوان تا دفاع)" را به عنوان هدیه دریافت نمایید.
فهرست :
فصل اول : مقدمه
فصل دوم : شناخت وضعیت زمین شناسی و آبهای زیرزمینی در دشتهای جنوب تهران
بخش اول – کلیاتی در مورد وضعیت زمین شناسی مهندسی دشتهای جنوب تهران
بخش دوم – وضعیت آبهای زیرزمینی در دشتهای جنوب تهران
فصل سوم : روشهای حفاری متداول در حفر تونل های مترو تهران
فصل چهارم : روشهای نگهداری و جلوگیری از نفوذ آب به داخل فضای تونلهای مترو
بخش اول – جلوگیری از مجاورت و برخورد آب با سطح خارجی تونل مترو
بخش دوم – روشهای عایق بندی ( ایزولاسیون ) تونل های مترو در برابر نفوذ آب
1- روش سگمنت گذاری و تزریق پشت سگمنت ( Grouting )
مقـــدمـــه :
1- هدف از انجام عمل تزریق
2- کاربرهای تزریق در چه مواردی است
3- انواع تزریق از نظر ساختار دیواره داخلی تونل
- مراحل آماده سازی تونل قبل از انجام مرحله تزریق :
4- تعریف سگمنت وکلید و طرز قرارگیری آنها در یک حلقه یا رینگ
5- ترتیب قرارگیری رینگها در داخل تونل مترو و دیگر سازه های زیرزمینی
6- طرز بندکشی و پر کردن شکافهای بین رینگها و سگمنتها
- مرحله تزریق دوغاب به گمانه ها و فضاهای خالی پشت سگمنتها :
7- گمانه زدن ، ترتیب گمانه ها در یک حلقه ، طرز گمانه زنی ، مراحل گمانه زنی
8- خالی کردن داخل گانه و آماده سازی گمانه برای شروع کارتزریق
9- توضیح میکسرها و همزنها و کارشان
10-پمپهای تولید فشار و کپسولهای فشار شکن و توضیح کار آنها
11- تعریف اصطلاح خورند در کارهای تزریق
12-توضیح تولید دوغاب و انواع آن
13- فشار تزریق و روش اندازه گیری و کنترل آن
14-دپی تزریق
15- مراحل انجام تزریق
16-روش تزریق دوغاب به داخل گمانه و استفاده از پکرها ( packer )
17-گرفتگی در مسیر انتقال دوغاب و چگونگی برطرف کردن آن
18- حداکثر زمانی که میتوان کار را به طور موقت تعطیل کرد
19- توضیح مواد افزودنی به دوغاب و نقش هریک از آنها در کار تزریق
20-اندازه گیری غلظت دوغاب
21-تعریف همل همگراسنجی
22-بیرون زدگی و نشتی آب و دوغاب و روش برطرف کردن آن
23-استفاده از ماده شیمیایی به نامه Penetron برای اطمینان از کار عایق بندی تونل
24-انجام تست آب در انتهای کار برای اطمینان از عایق بندی تونل
2- روش اطریشی ( عایق بندی به کمک p.v.c )
پاورپوینت روش های کنترل آب زیرزمینی در گودبرداری
شاید به جرات بتوان گفت هیچ مسئله ای به اندازه وجود آب نمی تواند موجب اختلال در پروژه گودبرداری شود.
این مسئله میتواند موجب کاهش ظرفیت باربری سطحی،تخریب پیشانی خاکی گود،عدم تمایل پیمانکاران در انتخاب روش شمع زنی و افزایش زمان و هزینه خواهد شد.
به همین دلیل برای رفع این مشکل روش های کنترل آب های زیرزمینی در گودبرداری در این فایل مطرح شده است که شامل موارد زیر است:
مقدمه
آب کشی گود
خشک سازی گود
روش های انحراف آب از اطراف گود
زهکشی گود
معرفی سیستم های نوین در این زمینه
این فایل با فرمت پاورپوینت در 43اسلاید تهیه شده است.
مطالعات مقدماتی و اصول عمومی طراحی فضاهای زیرزمینی
نگاهی اجمالی به سیر تحول تونلسازی
اگر حفر قنوات بخشی از عرضه تونلسازی محسوب شود آنگاه قدمت این فن به 2800 سال قبل از میلاد بر میگردد. زیرا باستانشناسان معتقدند که حفر قنوات در مصرو ایران از آن زمانها معمول بوده است. تذکر این نکته در اینجا در خور توجه است که در سال 1962 طول کل قنوات در ایران را 000/160 کیلومتر تخمین زدهاند. اگر از این مورد که ذکر شد صرفنظر شود اولین تونل زیرآبی در 2170 سال قبل از میلاد در زمان بابلیها در زیر رودخانه فرات و بطول یک کیلومتر ساخته شد که هر چند بصورت حفاری تونل اجرا نشده است ولی همین، کار حداقل تجربه و تبجر معماران آن عصر را نشان میدهد. از این نوع کار دیگر اجرا نشده است تا 4000 سال بعد که در 1825 تونل تیمز زیر رودخانه تیمز ندن ساخته شد. تونلزنی درون سنگها به علت شکل حفاری و عدم امکانات و عدم نیاز ـ به جز موارد بسیار محدود ـ فقط در دو قرن اخیر توسعه یافته اس. هر چند اختراع باروت به قرنها قبل بر میگردد و بعضی آنرا حتی به قرن دوم میلادی نسبت میدهند ولی کاربرد آن در شکستن سنگها احتمالاً در قرن 16 بوده است و اختراع دینامیت در قرن 19 موجب تحولات تدریجی ولی اساسی در سهولت ایجاد تونل در سنگها شد گرچه ایجاد تونل در سنگها به علت سختی سنگ نیاز به مواد منفجره و یا وسایل بسیار سخت و برنده دارد ولی در سنگهای خیلی نرم و در رسوبات سخت نشده، مشکل تونلزنی به لحاظ نگهداری تونل است. بطوری که تا قبل از اختراع شیلد توسط در سال 1812، ایجاد تونلهای بزرگ مقطع در رسوبات سست فوقالعاده مشکل مینمود. اولین کاربرد شیلد در 1825 در حفر تونل زیر رودخانه تیمز بود. هر چند حفر این تونل 5/1 کیلومتری حدود 18 سال طول کشید روش شیلد بعداً توسط تکمیل گردید و بعلاوه نامبرده کاربرد هوای فشرده را نیز در شیلد عملی ساخت (1886) با گسترش شهرها، اختراع ترنها، افزایش جمعیت، پیشرفت صنایع و نیاز مبرم به معادن گسترش شبکههای زیرزمینی، هم به منظور عبور و مرور و هم بمنظور انتقال آب و فاضلاب و نیز در پیشروی معادن و غیره ضرورت یافت و با سرعت روز افزون از اواخر قرن 19 تاکنون پیشرفتهای چشمگیری حاصل گردیده است. بگونهای که در سالهای اخیر استفاده از ماشینهای حفر تمام مقطع تونل رشد سریعی داشته است. ایده استفاده از این ماشینها از زمانهای دور است. اولین ثبت شده در امریکا توسط جان ویلسون در سال 1856 برای تونل هوساک در ماساچوست بوده است ولی تنها توانسته 3 متر از تونل 7600 متری را حفر نماید در دهههای اخیر توسعه بسیار زیادی پیدا کرده بطوری که در بسیاری از موارد بعنوان اولین گزینه برای حفر تونل میباشد.
فصل اول
مطالعات مقدماتی و اصول عمومی طراحی فضاهای زیرزمینی
فصل دوم
طـراحی چنـدفضـای زیـرزمینی مجـاور هم
فصل سوم
روش طراحی سازههای زیرزمینی
فصل چهارم
تفاوتها و ویژگیهای تونلهای معدنی و راه
فصل پنج
روشهای نـگهـداری تـونلهای معـدنی و راه
فصل ششم
حـفـاری تـونـلهـای مـعـدنـی و راه
منابع زغالسنگ و معادن زیرزمینی
پیشگفتار
تمام معدنهای زیرزمینی باید بطور مؤثری تهویه شوند اولاً برای تأمین اکسیژن کافی برای تنفس افراد، ثانیاً برای ایجاد شرایط کاری راحت برای کارکنان تا با حداکثر کارایی فعالیت کنند. ثالثاً برای رقیق کردن و خارج کردن گازها و گرد و غبار از معدن که در غیر این صورت جو معدن را آلوده می کنند.
در اصل با عبور دادن حجم کافی از هوای کثیف که از چاه خروج هوا خارج می شود به تمام اهداف بالا می توان رسید. برای ایجاد چنین جریان هوایی یک اختلاف فشار برای غلبه بر مقاومت معدن در برابر جریان هوا باید ایجاد شود. در معدنهای کوچک کاهی این امر به کمک تهویه طبیعی انجام می شود.
اما در بیشتر معدنهای امروزی اختلاف فشار کافی به صورت مؤثری با نصب یک پنکه مکنده در بالای دهانه چاه خروج هوا ایجاد می شود که بوسیله پنکههای کمکی نصب شده در مدار اصلی تهوی و در نقاط پیش بینی شده تقویت می شود. در تمام این حالتها حفاریهای معدنی باید چنان طراحی شوند که حداقل مقاومت را در برابر جریان هوا بوجود بیاورند.
علاوه بر مشکلات حرارت و رطوبت زیاد، گازها و گرد و غبار زیان آور مختلفی نیز در معدن تولید می شود. آنها شامل گازهای منوکسید کربن، متان، اکسید نیتروژن و سولفید هیدروژن برای هر کدام از این گارها حدود مجازی برای حداکثر سطوح تعیین شده است.
به این ترتیب هم از بروز مشکلات فیزیولوژیکی خطرناک و هم از تشکیل مخلوط های انفجار آور در هوا مانند متان در بیشتر معدنهای زیرزمینی دیگر جلوگیری می شود. وقتی تمرکز متان در هوا بین 5 تا 14 باشد در اثر یک شعله باز یک انفجار شدید می تواند رخ دهد. تمرکز بیش از یک درصد متان در عمل مجاز نیست.
مقدمه:
قبل از دهه 1990 ذغال سنگ مهمترین منبع سوختی اکثر کشورهای صنعتی جهان به ویژه آمریکا را تشکیل می داده و در حدود 90 درصد از نیاز انرژی آنها را تأمین نموده است. بعد از آن به دلیل تغییراتی که در وضعیت نفت خام و گاز طبیعی در بازارهای بین المللی صورت گرفت اهمیت ذغال سنگ کاهش یافت. با این وجود در حال حاضر ذغال سنگ منبع اولیه سوخت جهت تولید الکتریسیته می باشد زیرا بسیار ارزانتر از سوختهای فسیلی دیگر و در بسیاری از کشورها فراوانتر از آنهاست. در آمریکا، به عنوان مهمترین کشور صنعتی جهان، در سال 2000 میزان مصرف ذغال سنگ برای تولید برق حدود 83 میلیون تن (91 درصد از کل مصرف آن) بوده است که با این میزان بیش از نصف برق مصرفی آمذیکا تولید گریدید.
قبل از دهه 1970 گاز طبیعی ارزانترین سوخت مصرفی برای تولید الکتریسیته بوده است. در سال 1970 میانگین قیمت تمام شده برای هر میلیون Btu انرژی از گاز طبیعی 28 سنت، از ذغال سنگ 31 سنت و از نفت 42 سنت بوده است. از سال 1976 ذغالسنگ به ارزانترین سوخت برای تولید الکتریسته تبدیل شد. در حالیکه در همین سال نفت با 56/2 و ذغال سنگ با22/1 در درجات بعدی بوده اند. اگرچه هزینه تولید برق از ذغال سنگ افزایش یافته است با این وجود بسیار پایین تر از گاز طبیعی و نفت است.
قیمت میانگین ذغالسنگ تحویل شده برای تولید الکتریسیته در سال 2000 به ازاء هر تن (Short tonne) 28/24 دلار بوده است. نوسانات قیمت ذغال سنگ در بازار آمریکا از سال 1990 تا 1999 به صورت جدول شماره (1) بوده است. سیر نزولی قیمت آن به خوبی مشخص است.
کاربرد مهم دیگر ذغال سنگ تولید کک از آن است که برای ذوب کانه آهن و تولید فولاد به کار می رود قیمت میانگین ذغال سنگ های ویژه یای که برای ساختن کک استفاده می شود، در اوایل سال 1950 کاهش یافته است. از سال 1993 تا 2000 از 44/47 دلار در تن تا 45/44 دلار در تن کاهش یافته است. همانگونه که از جدول(1) مشخص است قیمت ذغال سنگ استخراجی در معدن در سال 1995 حدود 1 دلار پایین تر از سال 1998 بوده است. این در حالی است که این کاهش در 17 سال متمادی ادامه داشته است.
از آنجائی که ذغال سنگ دارای فراوانی زیادی است . برای مدت های طولانی قیمت آن پایین مانده است، بنابراین در بسیاری از طرحهای تولید برق در آمریکا از آن استفاده می کنند(ارقامی که در بالا آنها اشاره گردید از اطلاعات موجود در پایگاه اینترنتی eia.doe.gov مربوط به اطلاعات انرژی (Energy information sheet) استخراج گردیده اند.
ار کاربردهای دیگر زغال سنگ، بویژه لیگنت، کاربرد ویژه آن جهت تولید نفت و گاز است. از این ذغال سنگ تا حدود 38 گالن در تن نفت بدست آمده است. ذغال سنگهای نوغ لیگنیت به دلیل مقدار مواد فرار بالا، نسبت به ذغال سنگ های رده بالا دارای پتانسیل بیشتری در این زمینه هستند. ذغال سنگ دارای کاربردهای دیگری در صنایع دیگر از جمله نساجی، سیمان، قند و غیره است.
این مواد اگرچه عمدتاً در افقهای زمانی اواخر پالئوزوئیک و مزوزوئیک دیده می شوند، اما ذغال سنگهای ترشیاری نیز ذخایر عظیمی را در سرتا سر دنیا تشکیل می دهند و مزیت نسبی آنها وضعیت آنها برای فعالیتهای معدنکاری آسانتر است و ذغال سنگهای ترشیاری در بسیاری از کشورها دارای کاربردهای زیادی برای تولید الکتریسیته هستند.
بنابراین اجرای عملیات اکتشافی جهت پی جوئی ذغال سنگ در این منطقه نه تنها توجیه توسعه صنایع تولید برق و صنایع دیگر در منطقه می شود، محدودیت منابع نفت و گاز و دوری منطقه مورد مطالعه از این منابع توجیهی بر اکتشاف منابع دیگر انرژی در منطقه هستند.
مختصری در مورد ذخایر ذغال سنگ در حوزه کرمان:
رسوبات ذغال دار در حوزه کرمان با میانگین ضخامت 4870 متر از شمال خاوری(2520 متر) به جنوب باختری(7400 متر) تغییر ضخامت می دهند. تعداد لایه های ذغالی کارپذیر و غیرکارپذیر آن 94 لایه است که 63 لایه آن با ضخامت حداکثر 3/0 تا 4/0متر هستند. ذغال خیزی اصلی در بخشهای دهرود، داربید خون، ظغراجه قرار دارد و بخشهای نیزار، باب نیزو و دشت خاک فاقد ذغالخیزی است و فقط در بعضی از مناطق آن لایه های نازک و عدسی ذغال سنگ وجود دارد. ضریب ذغالخیزی کلی این حوزه 8/0 درصد و ضریب ذغالخیزی کارپذیر آن 24/0 درصد است. برشهای ذغالدار حوزه کرمان به 7 افق A،B، B1، C، C1، D، E تفکیک شده اند. افق های ذغالدار بوسیله فواصل غیر ذغالی به ضخامت 120 تا 440 متر از همدیگر جدا می شوند و در داخل هر افق ذغالدار، لایه های ذغالی نزدیک به هم (با فاصله 15 تا 20 متر از همدیگر) هستند. ضخامت لایه های ذغالی معمولاً کمتر از یک متر است، در بعضی مناطق ضخامت لایه ذغالی به 8 تا 9 متر می رسد. ذغالخیزی اصلی صنعتی در افق D قرار دارد و ضریب ذغالخیزی کلی آن 2/6 درصد و ذغالخیزی صنعتی آن 6/3 درصد است. لایه های ذغالی از جوانب محو میوند و در بعضی نقاط به آرژیلیت ذغالدار و آرژیلیت تبدیل می شوند.
افق A مربوط به تریاس بالا و با ضخامت 60 تا 80 متر است و دارای 7 لایه ذغال می باشد. در قسمت های شمال باختری و مرکزی ناحیه ذغالدار برونزد دارند و ضریب ذغالخیزی کلی این افق 67/1 درصد است و در آن لایه های کارپذیر دیده نمی شود.
افق B مربوط به تریاس استو در 150 متری بالای افق A قرار دارد ضخامت برش آن 100 تا 120 متر است و تا 8 لایه ذغالی که ضخامت هر یک 4/0 متر است وجود دارند. لایه های و آن در مناطق باب نیزو جنوبی،اشکلی و اسدآباد دارای ضخامت کارپذیر هستدند. ضریب ذغالخیزی کلی افق B در ناحیه کرمان 64/2 درصد و بیشترین آن در منطقه باب نیزو 16/4 است. ضریب ذغالخیزی کارپذیر آن 6/0 تا 84/0 درصد است.