پویا فایل

پویا فایل

پویا فایل

پویا فایل

معرفی و بررسی عوامل موثر در میزان نفوذ آبهای زیرزمینی به داخل تونلهای معدنی

معرفی و بررسی عوامل موثر در میزان نفوذ آبهای زیرزمینی به داخل تونلهای معدنی

چکیده :

جریان آب زیرزمینی به داخل تونلها همیشه یک مشکل فنی و محیطی عمده برای سازه های زیرزمینی بوده است . پیش بینی جریان آب زیرزمینی با استفاده از ابزارهای تحلیلی و عددی اغلب به علت عمومیت دادن و مختصر سازی پارامترهای مهم ، خصوصا“ در محیطهای نامتجانس همانند سنگهای متبلور ناموفق و بدون نتیجه موثر، مانده است . برای مشخص کردن پارامترهایی که در این سنگها جریانهای آب را کنترل می کنند، یک تجزیه تحلیل آماری اصولی در یک تول که در سنگهای متبلور سخت، در جنوب سوئد قرار دارد ، انجام شده است . این پارامترها شامل ، متغیرهای مهم عارضه ای ، فنی و زمین شناسی در سنگهای متبلور سخت و همچنین در پوشان سنگها می باشند. مطالعات مشخص کرد که عوامل زیادی به خصوصیات سنگ و همچنین خصوصیات پوشان سنگ وابسته می باشند. همچون تعداد شکافها، ضخامت پوشان سنگ ، نوع خاک و میزان مواد پرکننده در بین سنگها که مقدار چکه و نشت را کنترل می کنند. این مطالعات نشان میدهد که یک تفاوت آشکار بین پارامترهایی که نشتهای عمده و نشتهای جزئی را کنترل می کنند وجود دارد. نشتهای کوچکتر بیشتر به زهکشی توده سنگ مرتبط می باشد. در صورتیکه نشتهای عمده مشخصا“ به پارامترهای مختلف در پوشان سنگ بستگی دارند. در صورتی که پوشان سنگ وتوده سنگ بعنوان یک سیستم مشترک مطرح شوند، پیش بینی جریانهای آب زیرزمینی احتمالا“ با خطا همراه است .

فهرست علائم اختصاری بکار برده شده در متن :

1) V. L.F: (Very low Frequenxy )

2) A NOVA : (Analysis Of Variance )

3) GIS : (Geographic Information System )

4) K- W : (Kruskal – WALLIS )

5) K-T : (Kendall Tau )

فهرست مطالب

عنوان : صفحه

1- مقدمه . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2- سنگ ها . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 4

3- مشکلات ناشی از نشت آب . . . .. . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . . . 5

4- آب در روزنه ها و شکاف ها . . . . . . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . 5

4-1- چرخه آب شناختی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4-2- روزنه داری نخستین و ثانوی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4-3- سفره آب زیرزمینی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4-4- واحد های زمین شناختی آبده ، نیم آبده و نا آبده . . . . . . . . . . . 7

5- حرکت آبهای زیرزمینی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6- قانو ن دارسی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

7- ضریب نفوذ پذیری یا هدایت هیدرولیکی . . . . . . . . . . . . . . . . . . . . 8

8- ضریب انتقال . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

9-نشست ناشی از زهکشی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

10- حل شدن سنگ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

11- رسانندگی هیدرولیک سنگ ها . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

12- نگرشهای هیدرودینامیکی در مورد سنگها . . . . . . . . . . . . . . . . . . . 13

13- تونل بولمن در جنوب سوئد . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

14- زمین شناسی و فرایند نشت در تونل بولمن . . . . . . . . . . . . . . . 22

15- پیش بینی جریانها و جمع آوری اطلاعات جربان های روبه داخل آبهای زیرزمینی در تونل بولمن . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

16- اطلاعات ورشهای بکاربرده شده درمطالعه موردی تونل بولمن 28

17-مطالعه جریانات ورودی آب با استفاده از نقشه های تونل. . . . . 32

18-نتایج بدست آمده . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

18-1- متغیرهای توپوگرافی . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 36

18-2- متغیرهای خاک . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

18-3- متغیرهای سنگ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

18-4- متغیرهای تکنیکی . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 38

18-5- متغیرهای ژئوفیزیکی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

19-آنالیزرگراسیون مرکب چندگانه متغیرهای مستقل درارتباط با تونل بولمن . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

19-1-آنالیز رگرسیون درمقیاس 100 متری تونل بولمن . . . . . . . 45

19-2-آنالیز رگرسیون درمقیاس 500 متری تونل بولمن . . . . . . . . 46

20-بحث و بررسی نتایج بدست آمده از مطالعه موردی تونل بولمن48

21-نتیجه گیری . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 58

22-معادل فارسی واژه های انگلیسی بکار برده شده درمتن . . . . . . 58

23- منابع . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

فهرست اشکال
عنوان صفحه

شکل 1: ارتباط بین نشت واندازه مخزن درسنگهای پوشاننده . . . . . . . 3

شکل 2: تونل بولمن در جنوب سوئد . . . . . . . . . . . . ….. . . . . . . . . . . . . . . 3

شکل 3: مفاهیم سفره آب . . . . . . . . . . . . . . . . . . . . . …. . . . . . . . . . . . . . . 6

شکل 4: نفوذ پذیری هیدرولیکی سنگها و توده های سنگی . . . . . . . . . 11

شکل 5: رابطه بین نفوذ پذیری و عرض شکستگی . . . . . . . . . . . . . . . . 12

شکل 6: نمودار همبستگی . . . . . . . . . . . . . . . . . . . . . . . . . ..... . . . . . . . . . . . 19

شکل 7: جهت اصلی تمام درزه ها و ترکها. . . . . . . . . . . . …. . . . . . . . . . . 23

شکل 8: توجیه اصلی تمام ترکهای دارای نشت . . . . . . . . … . . . . . . . . . 23

شکل 9: توزیع فراوانی ترکها و ترکهای دارای نشت . . … . . . . . . . . . . . 24

شکل 10: توزیع هندسی شکافهای با نشت جزئی . . . . . … . . . . . . . . . . . 34

شکل 11: توزیع هندسی شکافهای با نشت عمده . . . . . …. . . . . . . . . . . 34

شکل 12: توزیع لگاریتمی نرمال ترکهای با نشت جزئی …. . . . . . . . . . 34

شکل 13: توزیع فراوانی شکافهای با نشت عمده . . . . . . ….. . . . . . . 36

شکل 14: نتایج کراسکال والیز آنووابه وسیله رتبه بندی. . . . …. . . . . 43

فهرست جداول

عنوان صفحه

جدول 1: فهرست متغیرهای هیدرولوژی ، توپوگرافی و تکنیکی که در تونل بولمن مورد تجزیه و تحلیل آماری قرار گرفته اند.. . . . . . . . . . . 30

جدول 2: نتایج عمده همبستگی متغیرهای مختلف در ارتباط با نشت عمده و جزئی شکافها . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

جدول 3: نتایج حاصل از آنالیز واریانس کراسکال والیزآنووا متغیرهای توپوگرافی . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

جدول 4: نتایج حاصل ازآنالیزواریانس کراسکال والیزآنووامتغیرهای خاک37

جدول 5: نتایج حاصل ازآنالیزواریانس کراسکال والیزآنووامتغیرهای سنگ38

جدول6:نتایج حاصل ازآنالیزواریانس کراسکال والیزآنووامتغیرهای تکنیکی39

جدول7:نتایج حاصل ازآنالیزواریانس کراسکال والیزآنووامتغیرهای ژئوفیزیکی

39

جدول8: فرمول های رگرسیون خطی برای نشتهای عمده و جزئی در مقیاس 100 متری . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

جدول 9: فرمول های رگرسیون خطی برای نشتهای عمده وجزئی در مقیاس 500 متری . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1- مقدمه :

نشت آب به داخل تونلها و حفریات سنگی مشکل فنی عمده ای برای این سازه‌های زیرزمینی می باشد. تراوش جریانهای آب به داخل سازه زیرزمینی باعث افزایش چشمگیر جهانی در هزینه های ساخت آن شده است. در ابتدا پمپاژ آبی که به درون سازه تراوش می کندامری ضروری است . سپس افزایش تعداد نگهداری هاو ایجاد پیش حفریات که هرکدام از آنها مشکلاتی را به همراه دارندباید اتخاذ شود. یک قسمت قابل توجه از هزینه ها در هنگام حفر تونل در سوئد مربوط به عملیات پیش دوغاب ریزی[1] است که برای محدود کردن جریان های آب ضروری می باشد. همچنین جریانهای زیاد آب به داخل تونل می تواند به طور جدی نیروی کاررا تحت خطر قرار دهد وموارد مطالعاتی بسیاری و گزارشهای متعددی درباره از دست رفتن زندگی افراد درج شده است . همچنین در حضور جریانهای بزرگ آب ، شرایط کارکردن سخت تر واز سرعت کار کاسته می شود. نتیجه محیطی مستقیم جریانهای آب ، افت فشار سطوح آب زیرزمینی در لایه های آبدار و سفره‌های آب زیرزمینی می باشد. افت فشار[2] طویل المدت بر نمو گیاهان ، منابع آب زیرزمینی و همچنین بر شیمی آبهای زیرزمینی تاثیر می گذارد (13). نشستی که در نتیجه کاهش فشار آب در لایه های خاکی اتفاق می افتد به ساختمانهای روی سطح زمین خسارت وارد می کند ( شکل 1) . به دلیل مشکلاتی که جریانهای ورودی آب ایجاد می کنند تلاش شده تا حداقل جریانهای ورودی عمده تعیین محل و پیش بینی شوند. پیش بینی های صحیح و موفق در انتخاب مسیر نهفته تونل وشیوه ساخت آن و همچنین در تشخیص شعاع تاثیر[3] و مخروط فرو رفتگی[4] یا افت فشار که توسط جریانهای ورودی ایجاد شده است کمک می کند. این مسائل درکاهش هزینه‌های ساختمانی و زیست محیطی موثر است امروزه مفهوم پیش بینی به مقدار زیادی به قابلیت اطمینان در مدل سازی جریان اب زیرزمینی وابسته می باشد . در سنگهای شکاف دار و با تخلخل کم مانند سنگهای اذرین سخت تلاشهای فراوانی در جهت توسعه روشهایی که سعی بر در آوردن خصوصیات پیچیده هندسی شکافها و درزه ها مطابق مدل یعنی می باشد انجام گرفته است (11). همچنین روشهای دیگری برای حل مشکلات جریان در سنگ شکاف دار همانند آنالیز ها و تجزیه تحلیلهای بدون بعد[5] ، شبیه سازی اتفاقی[6] و مدل فاقد کیفیتهای ظاهری و واقعی بکار برده می شوند (14) . به طور متناوب و برحسب نیاز روشهای متجانس و خواص موثر بر مدلسازی شکافهای مشخص استفاده شده است (7). به هرحال اغلب حتی با قابلیت استفاده خوب داده ها بدرستی نشان داده شده که مدلهای عددی بیشتر روی یک مقیاس جهانی پیش بینی های موفقی رامی توانند خلق کنند(8) . بعلاوه مدلسازی عددی دقیقا“ آخرین مرحله از یک عملیات پیش بینی کننده می باشد واین نتیجه منحصرا“ به مدل ادراکی[7] که در یک مرحله خیلی مقدماتی از اتصال اطلاعات اصلی مختلف بسط داده شده است وابسته می باشد. بنابراین اگر دریک عملیات پیش بینی کننده در ابتدا کاملا درک شود که چه چیزی و چگونه باید پیش بینی شود احتمال قوی تری برای موفقیت وجود دارد (9). اگر در بعضی مواقع معرفهای عددی توده سنگ برای پیش بینی کردن ناکافی باشند ، به این دلیل است که بعضی از فاکتورهای مهم در پیش بینی جریانها به حساب آورده نشده اند . هدف این مقاله نشان دادن رابطه آماری پارامترهای زمین شناسی در کنترل کردن جریانهای آب به داخل تونلها می باشد. نظر به اینکه توده های سنگ سخت معمولا“ دارای تخلخل خیلی کم می باشند. هنگامی که مخازن آبهای زیرزمینی در قسمت پوشان سنگ[8] یا کمر بالا قرار گرفته اند ، نشت از شکافها و درزهای سنگها صورت می گیرد . از این رو، بروی فاکتورهای مربوط به کمر بالا نیز ، مطالعات و آنالیز صورت گرفته است .


2-

20 بحث وبررسی[9] نتایج بدست آمده ازمطالعه موردی تونل بولمن :

درحال حاضر روشهای متعدد ی برای پیش بینی نشت آب در تاسیسات زیرزمینی حفر شده در سنگ های سخت بکار گرفته شده است. درطول 2 تا3 دهة گذشته تلاشهای زیادی برای بسط و توسعه مدلهای پیچیده 2 بعدی و 3 بعدی صورت گرفته است . با این وجود میان روشهای موجود هیچیک به طور عمومی به عنوان روش قابل اعتماد به رسمیت شناخته نمی شود. این می تواند بطور ضمنی به این معنی باشد که برخی نکات مهم در پروسة پیش بینی هنوز درنظر گرفته نشده است. یکی از محدودیتهای عمده درطول پیش بینی ، ممکن است این باشدکه تنها پارامترهای سنگ در نظر گرفته می شودو پارامترهای هیدرژئولوژی نظیر ضخامت پوشان سنگ و ارتباط با منابع تخلیة آب نادیده گرفته می شود. هدف از مطالعة حاضر، عمدتا“ بررسی معنی دار بودن آماری پارامترهای مختلف سنگ ، توپوگرافی، خاک و تکنیکی بود. بهمنظور تشریح رویدادهای نشت در حال وقوع درطول 25 کیلومتر از تونل بولمن که یک تونل صخره ای سخت در جنوب سوئد است ، توزیع فراوانی تعداد نشتها درطول مقاطع 100 متری در تونل بولمن بوسیلة توزیع هندسی بهتر تخمین زده می شد. اما با درنظرگرفتن تعداد متوسط شکافهای درحال نشت ، درفواصل 500 متری با مقاطع 100 متری پشت سرهم، فرم توزیع




خرید فایل


ادامه مطلب ...

ارزیابی پتانسیل روانگرایی در محدوده سازه های زیرزمینی با استفاده از زمین آمار مورد مطالعاتی، مسیر خط دو مترو تبریز

ارزیابی پتانسیل روانگرایی در محدوده سازه های زیرزمینی با استفاده از زمین آمار مورد مطالعاتی، مسیر خط دو مترو تبریز

روانگرایی خاک­ها در اثر بارگذاری­های دینامیکی همواره نگرانی مهمی برای کارهای مهندسی ژئوتکنیک بوده است که در طی آن خاک بصورت آنی مقاومت برشی خود را از دست می­دهد. وضعیت لرزه­خیزی شهر تبریز و نیز نوع دانه­بندی خاک­های واقع در مسیر خط دو متروی تبریز و عمق آب زیرزمینی در نقاط مختلف آن، این نهشته­ها را مستعد روانگرایی ساخته است. عملکرد لرزه­ای سازه­های زیرزمینی حفر شده در خاک­های با استعداد روانگرایی در طی زمین­لرزه­های گذشته، ارزیابی پتانسیل روانگرایی نهشته­های مذکور را ضروری می­سازد. مدل­های تجربی موجود برای این امر، ارزیابی پتانسیل روانگرایی را منحصرا در نقاط نمونه­برداری شده امکان­پذیر می­سازند. در مطالعه حاضر، در ابتدا با توجه به در دسترس بودن داده­های حاصل از SPT، از معیار یود و همکاران برای تحلیل پتانسیل روانگرایی در اعماق حاوی اطلاعات مورد نیاز استفاده شد. با توجه به اینکه این معیار برای خاک­های حاوی محتوی ریزدانه بالا پیش­بینی محافظه­کارانه­ای ارائه می­دهد، برای محاسبه فاکتور ایمنی در برابر روانگرایی این نوع خاک­ها، از معیارهای بری و سانشیو؛ و اندروس و مارتین نیز استفاده شد. پس از آن، برای تخمین مقادیر این پارامتر در نقاط اندازه­گیری نشده، از روش زمین­آمار استفاده شد و در نهایت مقاطع دو بعدی در دو راستای XY و YZ ارائه گشت.

واژه­های کلیدی: روانگرایی، مقاومت برشی، سازه­های زیرزمینی، مدل یود و همکاران، معیار بری و سانشیو، معیار اندروس و مارتین، زمین­آمار.

فهرست مطالب

فصل اول: مقدمه و اهداف تحقیق. 1

فصل دوم: پدیده روانگرایی و روش­های مختلف بررسی آن. 5

2-1- پدیده روانگرایی. 6

2-2- مکانیزم روانگرایی. 6

2-3- آسیب­های ناشی از روانگرایی خاک­ها 7

2-3-1- آسیب­های سطحی. 8

2-3-2- آسیب­های ناشی از روانگرایی بر سازه­های زیرزمینی. 8

2-3-2-1- انواع خرابی­های سازه­های زیرزمینی در اثر وقوع روانگرایی. 9

2-3-2-2- راهکارهای مقابله با خرابی­ها 11

2-4- روش­های مختلف ارزیابی پتانسیل روانگرایی در یک عمق معین از نهشته­های خاکی. 13

2-4-1- روش­های آزمایشگاهی موجود برای ارزیابی پتانسیل روانگرایی. 14

2-4-2- روابط تجربی موجود برای ارزیابی پتانسیل روانگرایی. 17

2-4-2-1- روابط تجربی بر مبنای داده­های حاصل از آزمون نفوذ استاندارد 17

2-4-2-1-1- آزمون نفوذ استاندارد 18

2-4-2-1-2- روش سید و ادریس... 20

2-4-2-1-3- روش ایواساکی و همکاران (1978). 25

2-4-2-2- روابط تجربی بر مبنای داده­های حاصل از آزمون نفوذ مخروط. 27

2-4-2-2-1- آزمون نفوذ مخروط. 27

2-4-2-2-2- روش رابرتسون و وراید (1998) 28

2-4-2-3- روابط بر مبنای سرعت موج برشی. 28

2-4-2-4- مقایسه دقت پیش­بینی روابط تجربی . 29

2-5- بررسی تغییرات پتانسیل روانگرایی در دو بعد و نیز در فضا 29

2-6- معیارهای موجود برای بررسی استعداد روانگرایی خاک­های لای­دار و رس­دار 30

2-7- جمع­بندی. 31

فصل سوم: مبانی زمین­آمار 32

3-1- مقدمه 33

3-2- واریوگرام 33

3-2-1- کلیات.. 33

3-2-2- واریوگرام جهتی و غیر جهتی. 37

3-2-3- روند. 39

3-2-4- ناهمسانگردی. 39

3-2-5- مدلسازی واریوگرام 40

3-2-5-1- مدل کروی. 40

3-2-5-2- مدل گوسی. 41

3-2-5-3- مدل نمایی. 41

3-2-5-4- مدل خطی بدون سقف.. 42

3-2-5-5- مدل خطی سقف­دار 42

3-2-5-6- مدل سینوسی (اثر سوراخ) 43

3-3- واریانس تخمین. 44

3-4- کریجینگ... 45

3-4-1- مقدمه 45

3-4-2-انواع کریجینگ... 45

3-4-2-1- انواع کریجینگ بر حسب مشخصات ساختار فضایی. 45

3-4-2-2- انواع کریجینگ بر حسب حجم پایه 47

3-4-2-2-1- کریجینگ نقطه­ای. 47

3-4-2-2-2- کریجینگ بلوکی. 47

3-4-2-3- سایر انواع کریجینگ... 47

3-5- مراحل تخمین به روش زمین آماری 47

3-6- مطالعات پیشین صورت گرفته در خصوص استفاده از زمین­آمار در ارزیابی پتانسیل روانگرایی 49

3-6-1- ییگوسگیل و همکاران (2006) 49

3-6-2- داوسون و بایز (2005) 50

3-7- جمع­بندی 52

فصل چهارم: معرفی مسیر خط دو مترو تبریز. 53

4-1- مقدمه. 54

4-2- وضعیت لایه­های زیرسطحی مسیر خط دو مترو تبریز. 54

4-3- زمین شناسی عمومی منطقه. 57

4-4- تکتونیک و لرزه­خیزی منطقه. 58

4-5- وضعیت آب زیرزمینی در محدوده مورد مطالعه 59

4-6- آزمایش­های صحرایی صورت گرفته در ناحیه مورد مطالعه 59

4-7- آزمایش­های آزمایشگاهی صورت گرفته در ناحیه مورد مطالعه 59

4-8- جمع­بندی. 60

فصل پنجم: تعیین پتانسیل روانگرایی رسوبات مسیر خط دو مترو تبریز با استفاده از زمین­آمار 61

5-1- مقدمه 62

5-2- آماده­سازی و تحلیل آماری داده­ها 62

5-3-واریوگرافی. 66

5-3-1- محاسبات واریوگرام تجربی و برازش مدل. 66

5-3-2- اعتبارسنجی داده­ها 68

5-4- تخمین کریجینگ... 69

5-5- جمع­بندی. 75

فصل ششم: نتایج و پیشنهادها 76

6-1- نتایج. 77

6-2- پیشنهادها 78

منابع و مآخذ. 79

پیوست.. 83

فهرست اشکال

شکل 2-1- شماتیک رفتار ذرات خاک الف) قبل، ب) بعد، ج) حین روانگرایی. 7

شکل 2-2- خرابی سطحی ناشی از حرکت رو به بالای یک سازه زیرزمینی. 8

شکل 2-3- وضعیت تونل الف) قبل، ب)پس از وقوع روانگرایی خاک­های اطراف آن. 10

شکل 2-4- نمایش نحوه نصب دیوارهای آب­بند به منظور کاهش اثرات روانگرایی خاک­های اطراف تونل. 12

شکل2-5- وضعیت برکنش سازه و آماس سطح ناشی از آن الف) قبل، ب) بعد از نصب دیوارهای آب­بند. 12

شکل 2-6- تاثیر نصب دیوار آب­بند بر جابجایی قائم سازه زیرزمینی. 13

شکل 2-7- وضعیت تنش در یک جزء کوچک خاک در صحرا الف) قبل از وقوع زلزله ب) پس از زلزله 14

شکل 2-8- حداکثر تنش برشی در یک عمق برای ستون خاک صلب.. 16

شکل 2-9- ناحیه روانگرایی در صحرا 16

شکل 2-10- نمونه­ای از روش­های انجام SPT و نیز تجهیزات مورد استفاده در آن. 19

شکل 2-11- فلوچارت تحلیل مربوط به روش یود و همکاران (2001) 21

شکل 2-12- رابطه بین بزرگای گشتاوری و سایر مقیاس­های بزرگا 22

شکل 2-13- محدوده خاک­های روانگرا 30

شکل 3-1- اصول محاسبه واریوگرام 34

شکل 3-2- نمونه­ای از یک واریوگرام 35

شکل 3-3- رابطه بین واریوگرام و کوواریوگرام 37

شکل 3-4- محدوده مجاز انتخاب نمونه­ها برای رسم واریوگرام جهتی. 38

شکل 3-5- مدل واریوگرام ناهمسانگردی هندسی. 39

شکل 3-6- مدل واریوگرام ناهمسانگردی منطقه­ای. 40

شکل 3-7- نمونه­ای از یک واریوگرام مدل کروی. 41

شکل 3-8- نمونه­ای از یک واریوگرام مدل گوسی. 41

شکل3-9- نمونه­ای از یک واریوگرام مدل نمایی. 42

شکل 3-10- مدل خطی بدون سقف.. 42

شکل 3-11- مدل خطی سقف­دار 43

شکل 3-12- نمونه­ای از یک مدل واریوگرام مدل سینوسی. 43

شکل 3-13- نمونه­ای از نقشه­های استعداد روانگرایی ترسیم شده با استفاده از ترکیب کریجینگ معمولی و GIS. 51

شکل 3-14- احتمال وقوع روانگرایی برآورد شده در بال­بوئا 52

شکل 4-1- مسیر خط دو بر روی نقشه تبریز. 55

شکل 4-2- بخشی از مقطع زمین­شناسی خط دوی متروی تبریز 57

شکل 4-3- نمونه­ای از داده­های حاصل از آزمون­های نفوذ استاندارد انجام گرفته در منطقه 59

شکل 5-1- الف) هیستوگرام؛ ب) نمودا احتمال نرمال مقادیر فاکتور ایمنی در برابر روانگرایی. 64

شکل 5-2- الف) هیستوگرام؛ ب) نمودا احتمال نرمال مقادیر تبدیل یافته فاکتور ایمنی در برابر روانگرایی 65

شکل 5-3- نمودار جعبه­ای مقادیر تبدیل­یافته الف) قبل از حذف؛ ب) بعد از حذف مقادیر خارج از ردیف 65

شکل5-4- واریوگرام تجربی در راستای XY و مدل نمایی برازش شده به آن 67

شکل 5-5- واریوگرام تجربی در راستای محور Z به همراه مدل برازش شده به آن 68

شکل 5-6- نمودار همبستگی مقایر اصلی و تخمینی فاکتور ایمنی در برابر روانگرایی 69

شکل 5-7-مقطع توپوگرافی مربوط به مسیر خط دو مترو تبریز 70

شکل 5-8- نقشه دو بعدی مقادیر تخمینی پارامتر فاکتور ایمنی در راستای XYو در ارتفاع؛ الف) 1329، ب) 1341، ج) 1365، د)1377 متری 72

شکل 5-9- نقشه دو بعدی واریانس خطای تخمین مقادیر فاکتور ایمنی؛ در ارتفاع الف) 1329پ، ب) 1341، ج) 1365، د)1377 متری 73

شکل 5-10- نقشه دو بعدی واریانس خطای تخمین مقادیر فاکتور ایمنی در طول؛­الف) 611361، ب) 612061، ج) 613261 متری 74

شکل 5-11- نقشه دو بعدی واریانس خطای تخمین مقادیر فاکتور ایمنی؛ در طول­الف) 611361، ب) 612061، ج) 613261 متری 75

فهرست جداول

جدول 2-1- تعداد نوسانات تنش­های مهم مربوط به .... 16

جدول 2-2- ضرایب اصلاح عدد SPT برای روش­ها و دستگاه­های مختلف صحرایی. 24

جدول 2-3- معیار اندروس و مارتین. 31

جدول 2-4- معیار بری و سانشیو. 32

جدول 4-1- زلزله های روی داده در اثر فعالیت گسل شمال تبریز. 58

جدول 5-1- خلاصه پارامترهای آماری مقادیر فاکتور ایمنی در برابر روانگرایی. 66

جدول 5-2- مختصات مربوط به دو نقطه ابتدا و انتهای مسیر مورد مطالعه 70



خرید فایل


ادامه مطلب ...

احداث تونل مترو و برخورد با مشکلات سفره آبهای زیرزمینی در آبرفتهای جنوب دشت تهران

احداث تونل مترو و برخورد با مشکلات سفره آبهای زیرزمینی در آبرفتهای جنوب دشت تهران

این محصول در قالب فایل word و در 83 صفحه تهیه و تنظیم شده است.

توجه :

شما می توانید با خرید این محصول فایل " قلق های پایان نامه نویسی (از عنوان تا دفاع)" را به عنوان هدیه دریافت نمایید.

فهرست :

فصل اول : مقدمه

فصل دوم : شناخت وضعیت زمین شناسی و آبهای زیرزمینی در دشتهای جنوب تهران

بخش اول کلیاتی در مورد وضعیت زمین شناسی مهندسی دشتهای جنوب تهران

بخش دوم وضعیت آبهای زیرزمینی در دشتهای جنوب تهران

فصل سوم : روشهای حفاری متداول در حفر تونل های مترو تهران

فصل چهارم : روشهای نگهداری و جلوگیری از نفوذ آب به داخل فضای تونلهای مترو

بخش اول جلوگیری از مجاورت و برخورد آب با سطح خارجی تونل مترو

بخش دوم روشهای عایق بندی ( ایزولاسیون ) تونل های مترو در برابر نفوذ آب

1- روش سگمنت گذاری و تزریق پشت سگمنت ( Grouting )

مقـــدمـــه :

1- هدف از انجام عمل تزریق

2- کاربرهای تزریق در چه مواردی است

3- انواع تزریق از نظر ساختار دیواره داخلی تونل

- مراحل آماده سازی تونل قبل از انجام مرحله تزریق :

4- تعریف سگمنت وکلید و طرز قرارگیری آنها در یک حلقه یا رینگ

5- ترتیب قرارگیری رینگها در داخل تونل مترو و دیگر سازه های زیرزمینی

6- طرز بندکشی و پر کردن شکافهای بین رینگها و سگمنتها

- مرحله تزریق دوغاب به گمانه ها و فضاهای خالی پشت سگمنتها :

7- گمانه زدن ، ترتیب گمانه ها در یک حلقه ، طرز گمانه زنی ، مراحل گمانه زنی

8- خالی کردن داخل گانه و آماده سازی گمانه برای شروع کارتزریق

9- توضیح میکسرها و همزنها و کارشان

10-پمپهای تولید فشار و کپسولهای فشار شکن و توضیح کار آنها

11- تعریف اصطلاح خورند در کارهای تزریق

12-توضیح تولید دوغاب و انواع آن

13- فشار تزریق و روش اندازه گیری و کنترل آن

14-دپی تزریق

15- مراحل انجام تزریق

16-روش تزریق دوغاب به داخل گمانه و استفاده از پکرها ( packer )

17-گرفتگی در مسیر انتقال دوغاب و چگونگی برطرف کردن آن

18- حداکثر زمانی که میتوان کار را به طور موقت تعطیل کرد

19- توضیح مواد افزودنی به دوغاب و نقش هریک از آنها در کار تزریق

20-اندازه گیری غلظت دوغاب

21-تعریف همل همگراسنجی

22-بیرون زدگی و نشتی آب و دوغاب و روش برطرف کردن آن

23-استفاده از ماده شیمیایی به نامه Penetron برای اطمینان از کار عایق بندی تونل

24-انجام تست آب در انتهای کار برای اطمینان از عایق بندی تونل

2- روش اطریشی ( عایق بندی به کمک p.v.c )



خرید فایل


ادامه مطلب ...

پاورپوینت روش های کنترل آب زیرزمینی در گودبرداری

پاورپوینت روش های کنترل آب زیرزمینی در گودبرداری

شاید به جرات بتوان گفت هیچ مسئله ای به اندازه وجود آب نمی تواند موجب اختلال در پروژه گودبرداری شود.
این مسئله میتواند موجب کاهش ظرفیت باربری سطحی،تخریب پیشانی خاکی گود،عدم تمایل پیمانکاران در انتخاب روش شمع زنی و افزایش زمان و هزینه خواهد شد.
به همین دلیل برای رفع این مشکل روش های کنترل آب های زیرزمینی در گودبرداری در این فایل مطرح شده است که شامل موارد زیر است:

مقدمه

آب کشی گود

خشک سازی گود

روش های انحراف آب از اطراف گود

زهکشی گود

معرفی سیستم های نوین در این زمینه

این فایل با فرمت پاورپوینت در 43اسلاید تهیه شده است.



خرید فایل


ادامه مطلب ...

مطالعات مقدماتی و اصول عمومی طراحی فضاهای زیرزمینی

مطالعات مقدماتی و اصول عمومی طراحی فضاهای زیرزمینی

نگاهی اجمالی به سیر تحول تونل‌سازی

اگر حفر قنوات بخشی از عرضه تونلسازی محسوب شود آنگاه قدمت این فن به 2800 سال قبل از میلاد بر می‌گردد. زیرا باستان‌شناسان معتقدند که حفر قنوات در مصرو ایران از آن زمانها معمول بوده است. تذکر این نکته در اینجا در خور توجه است که در سال 1962 طول کل قنوات در ایران را 000/160 کیلومتر تخمین زده‌اند. اگر از این مورد که ذکر شد صرفنظر شود اولین تونل زیرآبی در 2170 سال قبل از میلاد در زمان بابلیها در زیر رودخانه فرات و بطول یک کیلومتر ساخته شد که هر چند بصورت حفاری تونل اجرا نشده است ولی همین، کار حداقل تجربه و تبجر معماران آن عصر را نشان می‌دهد. از این نوع کار دیگر اجرا نشده است تا 4000 سال بعد که در 1825 تونل تیمز زیر رودخانه تیمز ندن ساخته شد. تونل‌زنی درون سنگها به علت شکل حفاری و عدم امکانات و عدم نیاز ـ به جز موارد بسیار محدود ـ فقط در دو قرن اخیر توسعه یافته اس. هر چند اختراع باروت به قرنها قبل بر می‌گردد و بعضی آنرا حتی به قرن دوم میلادی نسبت می‌دهند ولی کاربرد آن در شکستن سنگها احتمالاً در قرن 16 بوده است و اختراع دینامیت در قرن 19 موجب تحولات تدریجی ولی اساسی در سهولت ایجاد تونل در سنگها شد گرچه ایجاد تونل در سنگها به علت سختی سنگ نیاز به مواد منفجره و یا وسایل بسیار سخت و برنده دارد ولی در سنگهای خیلی نرم و در رسوبات سخت نشده، مشکل تونل‌زنی به لحاظ نگهداری تونل است. بطوری که تا قبل از اختراع شیلد توسط در سال 1812، ایجاد تونلهای بزرگ مقطع در رسوبات سست فوق‌العاده مشکل می‌نمود. اولین کاربرد شیلد در 1825 در حفر تونل زیر رودخانه تیمز بود. هر چند حفر این تونل 5/1 کیلومتری حدود 18 سال طول کشید روش شیلد بعداً توسط تکمیل گردید و بعلاوه نامبرده کاربرد هوای فشرده را نیز در شیلد عملی ساخت (1886) با گسترش شهرها، اختراع ترنها، افزایش جمعیت، پیشرفت صنایع و نیاز مبرم به معادن گسترش شبکه‌های زیرزمینی، هم به منظور عبور و مرور و هم بمنظور انتقال آب و فاضلاب و نیز در پیشروی معادن و غیره ضرورت یافت و با سرعت روز افزون از اواخر قرن 19 تاکنون پیشرفتهای چشمگیری حاصل گردیده است. بگونه‌ای که در سالهای اخیر استفاده از ماشینهای حفر تمام مقطع تونل رشد سریعی داشته است. ایده استفاده از این ماشینها از زمانهای دور است. اولین ثبت شده در امریکا توسط جان ویلسون در سال 1856 برای تونل هوساک در ماساچوست بوده است ولی تنها توانسته 3 متر از تونل 7600 متری را حفر نماید در دهه‌های اخیر توسعه بسیار زیادی پیدا کرده بطوری که در بسیاری از موارد بعنوان اولین گزینه برای حفر تونل می‌باشد.

فصل اول

مطالعات مقدماتی و اصول عمومی طراحی فضاهای زیرزمینی
فصل دوم

طـراحی چنـدفضـای زیـرزمینی مجـاور هم
فصل سوم

روش طراحی سازه‌های زیرزمینی
فصل چهارم

تفاوتها و ویژگیهای تونلهای معدنی و راه


فصل پنج

روشهای نـگهـداری تـونلهای معـدنی و راه

فصل ششم

حـفـاری تـونـلهـای مـعـدنـی و راه



خرید فایل


ادامه مطلب ...

منابع زغالسنگ و معادن زیرزمینی

منابع زغالسنگ و معادن زیرزمینی

پیشگفتار

تمام معدنهای زیرزمینی باید بطور مؤثری تهویه شوند اولاً برای تأمین اکسیژن کافی برای تنفس افراد، ثانیاً برای ایجاد شرایط کاری راحت برای کارکنان تا با حداکثر کارایی فعالیت کنند. ثالثاً برای رقیق کردن و خارج کردن گازها و گرد و غبار از معدن که در غیر این صورت جو معدن را آلوده می کنند.

در اصل با عبور دادن حجم کافی از هوای کثیف که از چاه خروج هوا خارج می شود به تمام اهداف بالا می توان رسید. برای ایجاد چنین جریان هوایی یک اختلاف فشار برای غلبه بر مقاومت معدن در برابر جریان هوا باید ایجاد شود. در معدنهای کوچک کاهی این امر به کمک تهویه طبیعی انجام می شود.

اما در بیشتر معدنهای امروزی اختلاف فشار کافی به صورت مؤثری با نصب یک پنکه مکنده در بالای دهانه چاه خروج هوا ایجاد می شود که بوسیله پنکه‌های کمکی نصب شده در مدار اصلی تهوی و در نقاط پیش بینی شده تقویت می شود. در تمام این حالتها حفاریهای معدنی باید چنان طراحی شوند که حداقل مقاومت را در برابر جریان هوا بوجود بیاورند.

علاوه بر مشکلات حرارت و رطوبت زیاد، گازها و گرد و غبار زیان آور مختلفی نیز در معدن تولید می شود. آنها شامل گازهای منوکسید کربن، متان، اکسید نیتروژن و سولفید هیدروژن برای هر کدام از این گارها حدود مجازی برای حداکثر سطوح تعیین شده است.

به این ترتیب هم از بروز مشکلات فیزیولوژیکی خطرناک و هم از تشکیل مخلوط های انفجار آور در هوا مانند متان در بیشتر معدنهای زیرزمینی دیگر جلوگیری می شود. وقتی تمرکز متان در هوا بین 5 تا 14 باشد در اثر یک شعله باز یک انفجار شدید می تواند رخ دهد. تمرکز بیش از یک درصد متان در عمل مجاز نیست.


مقدمه:

قبل از دهه 1990 ذغال سنگ مهمترین منبع سوختی اکثر کشورهای صنعتی جهان به ویژه آمریکا را تشکیل می داده و در حدود 90 درصد از نیاز انرژی آنها را تأمین نموده است. بعد از آن به دلیل تغییراتی که در وضعیت نفت خام و گاز طبیعی در بازارهای بین المللی صورت گرفت اهمیت ذغال سنگ کاهش یافت. با این وجود در حال حاضر ذغال سنگ منبع اولیه سوخت جهت تولید الکتریسیته می باشد زیرا بسیار ارزانتر از سوختهای فسیلی دیگر و در بسیاری از کشورها فراوانتر از آنهاست. در آمریکا، به عنوان مهمترین کشور صنعتی جهان، در سال 2000 میزان مصرف ذغال سنگ برای تولید برق حدود 83 میلیون تن (91 درصد از کل مصرف آن) بوده است که با این میزان بیش از نصف برق مصرفی آمذیکا تولید گریدید.

قبل از دهه 1970 گاز طبیعی ارزانترین سوخت مصرفی برای تولید الکتریسیته بوده است. در سال 1970 میانگین قیمت تمام شده برای هر میلیون Btu انرژی از گاز طبیعی 28 سنت، از ذغال سنگ 31 سنت و از نفت 42 سنت بوده است. از سال 1976 ذغالسنگ به ارزانترین سوخت برای تولید الکتریسته تبدیل شد. در حالیکه در همین سال نفت با 56/2 و ذغال سنگ با22/1 در درجات بعدی بوده اند. اگرچه هزینه تولید برق از ذغال سنگ افزایش یافته است با این وجود بسیار پایین تر از گاز طبیعی و نفت است.

قیمت میانگین ذغالسنگ تحویل شده برای تولید الکتریسیته در سال 2000 به ازاء هر تن (Short tonne) 28/24 دلار بوده است. نوسانات قیمت ذغال سنگ در بازار آمریکا از سال 1990 تا 1999 به صورت جدول شماره (1) بوده است. سیر نزولی قیمت آن به خوبی مشخص است.

کاربرد مهم دیگر ذغال سنگ تولید کک از آن است که برای ذوب کانه آهن و تولید فولاد به کار می رود قیمت میانگین ذغال سنگ های ویژه یای که برای ساختن کک استفاده می شود، در اوایل سال 1950 کاهش یافته است. از سال 1993 تا 2000 از 44/47 دلار در تن تا 45/44 دلار در تن کاهش یافته است. همانگونه که از جدول(1) مشخص است قیمت ذغال سنگ استخراجی در معدن در سال 1995 حدود 1 دلار پایین تر از سال 1998 بوده است. این در حالی است که این کاهش در 17 سال متمادی ادامه داشته است.

از آنجائی که ذغال سنگ دارای فراوانی زیادی است . برای مدت های طولانی قیمت آن پایین مانده است، بنابراین در بسیاری از طرحهای تولید برق در آمریکا از آن استفاده می کنند(ارقامی که در بالا آنها اشاره گردید از اطلاعات موجود در پایگاه اینترنتی eia.doe.gov مربوط به اطلاعات انرژی (Energy information sheet) استخراج گردیده اند.

ار کاربردهای دیگر زغال سنگ، بویژه لیگنت، کاربرد ویژه آن جهت تولید نفت و گاز است. از این ذغال سنگ تا حدود 38 گالن در تن نفت بدست آمده است. ذغال سنگهای نوغ لیگنیت به دلیل مقدار مواد فرار بالا، نسبت به ذغال سنگ های رده بالا دارای پتانسیل بیشتری در این زمینه هستند. ذغال سنگ دارای کاربردهای دیگری در صنایع دیگر از جمله نساجی، سیمان، قند و غیره است.

این مواد اگرچه عمدتاً در افقهای زمانی اواخر پالئوزوئیک و مزوزوئیک دیده می شوند، اما ذغال سنگهای ترشیاری نیز ذخایر عظیمی را در سرتا سر دنیا تشکیل می دهند و مزیت نسبی آنها وضعیت آنها برای فعالیتهای معدنکاری آسانتر است و ذغال سنگهای ترشیاری در بسیاری از کشورها دارای کاربردهای زیادی برای تولید الکتریسیته هستند.

بنابراین اجرای عملیات اکتشافی جهت پی جوئی ذغال سنگ در این منطقه نه تنها توجیه توسعه صنایع تولید برق و صنایع دیگر در منطقه می شود، محدودیت منابع نفت و گاز و دوری منطقه مورد مطالعه از این منابع توجیهی بر اکتشاف منابع دیگر انرژی در منطقه هستند.

مختصری در مورد ذخایر ذغال سنگ در حوزه کرمان:

رسوبات ذغال دار در حوزه کرمان با میانگین ضخامت 4870 متر از شمال خاوری(2520 متر) به جنوب باختری(7400 متر) تغییر ضخامت می دهند. تعداد لایه های ذغالی کارپذیر و غیرکارپذیر آن 94 لایه است که 63 لایه آن با ضخامت حداکثر 3/0 تا 4/0متر هستند. ذغال خیزی اصلی در بخشهای دهرود، داربید خون، ظغراجه قرار دارد و بخشهای نیزار، باب نیزو و دشت خاک فاقد ذغالخیزی است و فقط در بعضی از مناطق آن لایه های نازک و عدسی ذغال سنگ وجود دارد. ضریب ذغالخیزی کلی این حوزه 8/0 درصد و ضریب ذغالخیزی کارپذیر آن 24/0 درصد است. برشهای ذغالدار حوزه کرمان به 7 افق A،B، B1، ‍C، C1، D، E تفکیک شده اند. افق های ذغالدار بوسیله فواصل غیر ذغالی به ضخامت 120 تا 440 متر از همدیگر جدا می شوند و در داخل هر افق ذغالدار، لایه های ذغالی نزدیک به هم (با فاصله 15 تا 20 متر از همدیگر) هستند. ضخامت لایه های ذغالی معمولاً کمتر از یک متر است، در بعضی مناطق ضخامت لایه ذغالی به 8 تا 9 متر می رسد. ذغالخیزی اصلی صنعتی در افق D قرار دارد و ضریب ذغالخیزی کلی آن 2/6 درصد و ذغالخیزی صنعتی آن 6/3 درصد است. لایه های ذغالی از جوانب محو می‌وند و در بعضی نقاط به آرژیلیت ذغالدار و آرژیلیت تبدیل می شوند.

افق A مربوط به تریاس بالا و با ضخامت 60 تا 80 متر است و دارای 7 لایه ذغال می باشد. در قسمت های شمال باختری و مرکزی ناحیه ذغالدار برونزد دارند و ضریب ذغالخیزی کلی این افق 67/1 درصد است و در آن لایه های کارپذیر دیده نمی شود.

افق B مربوط به تریاس استو در 150 متری بالای افق A قرار دارد ضخامت برش آن 100 تا 120 متر است و تا 8 لایه ذغالی که ضخامت هر یک 4/0 متر است وجود دارند. لایه های و آن در مناطق باب نیزو جنوبی،اشکلی و اسدآباد دارای ضخامت کارپذیر هستدند. ضریب ذغالخیزی کلی افق B در ناحیه کرمان 64/2 درصد و بیشترین آن در منطقه باب نیزو 16/4 است. ضریب ذغالخیزی کارپذیر آن 6/0 تا 84/0 درصد است.



خرید فایل


ادامه مطلب ...

آبهای زیرزمینی حوزه بلغور

آبهای زیرزمینی حوزه بلغور


-1- مقدمه

مشکل آب آشامیدنی و قابل شرب در بسیاری از مناطق کشورمان و حتی برخی زیر حوضه های آبخیز، هنوز حل نشده و این مهم به قوت خود باقی مانده است که به مرور زمان نیز بحرانی می شود. هنوز هم در تعداد زیادی از شهرها و روستاهای کشور، آب با کیفیت نامطلوب و حتی در مواردی آبهای آلوده مورد استفاده قرار می گیرد. در بسیاری از مناطق روستایی ،‌گورستان در مرکز یا در مجاورت روستا واقع شده و آب آشامیدنی مردم از طریق چاههای دستی محفور در چند متری گورستان تامین می شود. این مسایل در برخی موارد، مشکلات عدیده ای را در خصوص وضعیت اجتماعی – رفاهی اهالی منطقه و ساختار آن فراهم آورده است.

به منظور غلبه بر تمامی مشکلات و کمبودهای موجود یک سری اقداماتی لازم است که خوشبختانه این معضلات به آسانی قابل رفع می باشد. در حال حاضر و برای سال های آتی، محدودیت دسترسی به آب، در مناطق خشک و نیمه خشک و حتی مرطوب وجود دارد. مسلما” مساله تامین آب در زیر حوضه های خشک و نیمه خشک دارای جوامع روستایی که کمبود آن به اقلیم منطقه (بارش جوی کم و پراکنده و نرخ تبخیر و تعرق بالا) بستگی دارد در صورت عدم چاره اندیشی و جامع عمل پوشاندن به آن به صورت مشکلی بزرگ باقی می ماند.

مطالعات آب زیرزمینی به منظور ارزیابی هیدروژئولوژیکی زیرحوضه ها، شناخت کمی و کیفی پتانسیل منابع آبی سازندهای سخت درز و شکافدار (کارستی)، بررسی کمی و کیفی آب زیرزمینی، تعیین حجم تخلیه متوسط سالانه منابع آبی حوزه و یا زیرحوزه ها صورت می گیرد. در این گزارش، بررسی کیفیت و کمیت آب زیرزمینی حوزه آبخیز بلغور مشهد مورد بررسی قرار گرفته است.

5-2- روش کار ( Metodology)

در این گزارش، ابتدا با شناخت مقدماتی حوزه آبخیز مورد نظر و تبادل نظر کارشناسان گروههای مطالعاتی دیگر ، اطلاعات اولیه حاصل گردیده است. سپس عملیات میدانی در حوزه مربوطه به منظور شناخت بهتر حوزه ، بررسی پتانسیل سطح الارضی و تحت الارضی منابع آب ، سرعت عمل در آماربرداری تکمیلی منابع آب زیرزمینی (چاه ، چشمه ، قنات) انجام گرفته است.

گزارش کیفیت آب زیرزمینی حوزه آبخیز بلغور شهر مشهد ضمن جمع آوری آمار و اطلاعات و گزارش های موجود و همچنین اخذ اطلاعات از گروه های مطالعاتی دیگر مشاور باتوجه به شرح خدمات موجود تهیه و تدوین شده است. آمار گرفته شده به شرح زیر است:

1 – نقشه توپوگرافی شامل موقعیت زیر حوزه ها، شبکه آبراهه ها، راههای دستیابی و مناطق روستایی حوزه های مطالعاتی.

2 – نقشه های زمین شناسی و نفوذپذیری حوضه ها (تهیه شده در سیستم G I S ) .

3 – نقشه منابع آب حوضه ها.

4 – گزارش زمین شناسی و ژئومرفولوژی حوضه های مورد مطالعه.

5-3- موقعیت جغرافیایی منطقه مورد مطالعه

حوزه آبخیز بلغور شهرستان مشهد با مساحت هکتار ، در حوزه آبریز قره قوم (یکی از حوزه های ششگانه استان خراسان) و شمال شرق شهرستان مشهد واقع شده است . از نظر موقعیت جغرافیایی ، حوزه آبخیز بلغور در محدوده تا طول شرقی و تا عرض شمالی و همچنین تا طول شرقی و تا عرض شمالی (برحسب X , , Y و UTM ) واقع شده است. روستای بلغور آبادی بزرگ و مهم منطقه است که در غرب حوضه قرار دارد. راه دستیابی به منطقه مورد مطالعه از طریق جاده اصلی آسفالته مشهد – کارده – مارشک می باشد. (شکل 1 و 2)

شکل 1

موقعیت جغرافیایی حوزه آبخیز بلغور شهرستان مشهد در استان خراسان

شکل 2

راههای دستیابی و زیرحوزه های حوزه آبخیز بلغور شهرستان مشهد و شبکه

آبراهه های اصلی آن

5 – 4- آماربرداری تکمیلی و تهیه نقشه منابع آب

آماربرداری تکمیلی در بازدیدهای محلی با کمک یکی از اهالی حوزه منطقه (جهت نشان دادن چاه ، جشمه) در دو مرحله به دلیل جاری شدن سیل و بسته شدن برخی چشمه ها انجام گرفته است. (تاریخ آماربرداری در قست عنوان جدول پیوست درج شده است) آمار و اطلاعات منابع مذکور مطابق جدول پیوست تهیه و در اختیار واحد G I S به منظور پلات نقشه منابع اب قرار داده شده است.

موقعیت دقیق منابع آب توسط دستگاه مختصات یاب جغرافیایی ( G P S ) صورت گرفته است. آماربرداری کیفی منابع آب موجود زیرحوزه ها نیز بیشتر معطوف به چشمه ها و چاههایی است که با توجه به قضاوت کارشناسی، احتمال آلودگی های ناشی از منابع مختلف وجود داشته است. این نمونه ها حداکثر ظرف 24 ساعت جهت آنالیز شیمیایی یون های غالب به آزمایشگاه انتقال یافته است. نتایج آنالیز کاتیون و آنیون های غالب به لحاظ مصارف شرب و کشاورزی و همچنین تیپ آب ، با اسفتاده از دیاگرام های شولر، و یکلوکس و استیف مورد بررسی قرار گرفته است.

تهیه نقشه منابع آب محدوده های مطالعاتی از اهمیت زیادی برخوردار است. زیرا در مراحل عملیات اجرایی سازه ها،‌ نیاز به شناخت و انتخاب چشمه ها جهت تامین حجم آب مصرفی ضروری می باشد. به عبارت دیگر، در صورت نیاز به آب جهت اجرای پروژه های تصویب شده به کمک نقشه منابع آب می توان به حجم آب مصرفی دست یافت. موقعیت دقیق منابع آبی شناسایی شده در شکل 3 مشخص می باشد.

شکل 3

پراکندگی و موقعیت منابع آب حوزه آبخیز بلغور شهرستان مشهد (چشمه و چاه) که بر روی نقشه پایه حاوی زیرحوزه ها و شبکه آبراهه ها پلات شده است

5-4-1- چاه

از آنجائی که ضخامت رسوبات آبرفتی حوزه بلغور (به غیر از محدوده خود روستا) چندان زیاد نیست، عمده چاه های بهره برداری از نوع کم عمق می باشد. از طرفی به علت حجم کم ذخیره آب در مخازن آبرفتی استحصال آن عمدتا” از طریق موتورهای برقی کوچک و بعضا” دیزلی صورت می گیرد. بهره برداری منابع آب از طریق چنین چاه هایی نامنظم (چند ساعت در روز) است. در واقع این گونه چاه های بهره برداری، نقش زهکش آب موجود در منافذ و خلل و فرج رسوبات آبرفتی را بر عهده دارد که بعضا” توسط نیروی موتور به سطح انتقال یافته و مورد استفاده بخش کشاورزی و شرب قرار می گیرد.



خرید فایل


ادامه مطلب ...

خرید و دانلود پروژه نقشه برداری زمینی و زیرزمینی

پروژه نقشه برداری زمینی و زیرزمینی (powerpoint)     نقشه برداری زیر زمینی: منظور از نقشه برداری زیر زمینی کلیه عملیات و محاسبات نقشه برداریست که برای تعیین موقعیت و حدود و مشخصات عوارض در زیر سطح زمین به کار می روند.عوارضی که موضوع این برداشت قرار می گیرند عبارتند از : چاه ها ، دالان ها یا راهروهای زیرزمینی – غارهای زیرزمینی که ممکن است به صورت انبار یا پناهگاه مورد استفاده قرار گیرند – تونل ها- معادن و منابع زیرزمینی و غیره. برای دسترسی به منابع در معدن غالباً باید به وسیله چاه ها و راهروها از سطح زمین به محل آن ها دست یافت. برای عبور کابل های برق و آبرسانی نیز از راهروهای زیرزمینی استفاده می شود.   نقشه برداری زیر زمینی شامل موارد زیر می باشد:   1- طراحی در مرحله شروع پروژه   تونل را بر عهده دارد. 2- اجرای عملیات حفاری هدایت 3- تهی ه نقش ...


ادامه مطلب ...

دانلود مقاله ترجمه کتاب هیدرولوژی و هیدرولیک آبهای زیرزمینی مک ورتر

    آب با عمقی کم در بالای ستونی از مواد آکیفری قرار دارد. (شکل 3 . 5) ارتفاع نقطه پایانی لوله آبده(تخلیه) در سطحی برابر با ارتفاع کف ستون مستقر می شود. افت ارتفاع (بار) از میان لوله آبده ناچیز است. آب با میزانی برابر با آنچه که از کف ستون تخلیه می شود آب با میزانی با آنچه که از کف ستون تخلیه می شود به بالای ستون افزوده می شود. هدایت هیدرولیکی ماده متخلخل و 1 سانتی متر ثانیه است. سرعت دارسی را در ستون حساب کنید. همچنین، فرمولی کلی برایq بر حسب k و عمق آب انباشته شده و y و طول ستون، L بدست آورید.               شکل 3 – 5 ) جریان پایا به سمت پایین در یک ستون قائم.   معادله به دست آمده در مثال 3 . 5 برای این مورد کاربرد دارد، زیرا در این حالت نیز جریان موازی با محور z است و k,q هر دو مقادیری ثابت است. کف ماده متخلخل در ستون به عنوان سط ...


ادامه مطلب ...

دانلود مقاله کالورت‌ها یا آبرو‌های زیرزمینی

      چنانچه در مسیر آبرو یا خط‌القعری و به جهت ایجاد راه‌ یا راه‌آهن از خاکریز استفاده شود، برای انتقال آب از یک سوی خاکریز به سمت دیگر آن، از سازه‌ای به نام کالورت استفاده می‌شود که در پایین‌ترین نقطه خط‌القعر ساخته می‌گردد. این نوع سازه‌ها اگرچه از نظر اجرایی ساده هستند، اما طرح هیدرولیکی آنها تا حدودی پیچیده و تابعی از عوامل مختلف است که به سادگی قابل تقسیم به جریان‌های تحت فشار یا آزاد نمی‌باشد، بلکه در برخی موارد ترکیبی از این دو حالت را دارا خواهد بود. از نقطه نظر هیدرولیکی، آنچه اهمیت دارد، این است که آیا کالورت جریان را به صورت پر از خود عبور می دهد یا نیمه‌ پر. به عنوان مثال حتی اگر عمق پایاب در خروجی کالورت کمتر از ارتفاع آن باشد و یا اصطلاحاً کالورت غیرمستغرق باشد، بسته به این که ارتفاع آب در بالادست ...


ادامه مطلب ...