پویا فایل

پویا فایل

پویا فایل

پویا فایل

تشخیص خطای سیم بندی استاتور با آنالیز موجک و شبکه عصبی

تشخیص خطای سیم بندی استاتور با آنالیز موجک و شبکه عصبی




چکیده:

در این پایان نامه ابتدا عیوب الکتریکی و مکانیکی در ماشینهای الکتریکی بررسی گردیده و عوامل به وجود آورنده و روشهای رفع این عیوب بیان شده است . به دنبال آن ، به کمک روش تابع سیم پیچی ماشین شبیه سازی و خطای مورد نظر یعنی خطای سیم بندی استاتور به آن اعمال و نتایج مورد بررسی قرار داده شده است. پارامتر اصلی که برای تشخیص خطا در این پایان نامه استفاده کرده ایم ، جریان سه فاز استاتور در حالت سالم و خطادار ،تحت بارگذاری های مختلف خواهد بود.

در قسمت بعدی تئوری موجک و همچنین شبکه عصبی مورد بررسی قرار گرفته است . مادر اینجا از برای استخراج مشخصات سیگنال استفاده کرده ایم ، مهمترین دلیلی که برای استفاده از این موجک داریم خاصیت متعامد بودن و پشتیبانی متمرکز سیگنال در حوزه زمان می باشد. شبکه عصبی که برای تشخیص خطا استفاده کرده ایم ، شبکه سه لایه تغذیه شونده به سمت جلو با الگوریتم آموزش BP و تابع فعالیت سیگموئیدی می باشد . در فصل چهارم روش تشخیص خطای سیم بندی استاتور در ماشین القایی بیان شده است که به صورت ترکیبی از آنالیز موجک و شبکه عصبی لست. روند کلی تشخص خطا به این صورت می باشد که ابتدا از جریان استاتور ماشین در حالت سالم و همچنین تحت خطاهای مختلف که در فصل دوم بدست آورده ایم استفاده شده و تبدیل موجک بروی آن اعمال گردیده است.سپس با استفاده از ضرایب موجک مقادیر انرژی در هر مقیاس استخراج و به عنوان ورودی شبکه عصبی جهت آموزش دادن آن برای تشخیص خطای سیم بندی استاتور مورد استفاده قرار گرفته است. در نهایت به کمک داده های تست، صحت شبکه مذکور مورد بررسی قرار داده شده است. در نهایت نتیجه گیری و پیشنهادات لازم بیان گردیده است.

با توجه به مطالب اشاره شده نتیجه می شود که با تشخیص به موقع هر کدام از عیوب اوّلیه در ماشین القایی می توان از پدید آمدن حوادث ثانویّه که منجر به وارد آمدن خسارات سنگین می گردد ، جلوگیری نمود . در این راستا سعی شده است که با تحلیل ، بررسی و تشخیص یکی از این نمونه خطاها، خطای سیم بندی استاتور یک موتور القایی قفس سنجابی ، گامی موثر در پیاده سازی نظام تعمیراتی پیشگویی کننده برداشته شود و با بکارگیری سیستم های مراقبت وضعیت بروی چنین ماشینهایی از وارد آمدن خسارات سنگین بر صنایع و منابع ملی جلوگیری گردد.




مقدمه:

موتورهای الکتریکی نقش مهمی را در راه اندازی موثر ماشینها و پروسه های صنعتی ایفا می کنند. بخصوص موتورهای القایی قفس سنجابی را که بعنوان اسب کاری صنعت می شناسند. بنابراین تشخیص خطاهای این موتورها می تواند فواید اقتصادی فراوانی در پی داشته باشد. از جمله مدیریت کارخانه های صنعتی را آسان می کند، سطح اطمینان سیستم را بالا می برد، هزینه تعمیر و نگهداری پایین می آید و نسبت هزینه به سود بطور قابل توجهی کاهش می یابد.

Bonnett و Soukup برای خرابیهای استاتور موتورهای القایی سه فاز قفس سنجابی، پنج حالت خرابی مطرح کرده اند که عبارت اند از: حلقه به حلقه، کلاف به کلاف، قطع فاز، فاز به فاز و کلاف به زمین[1]. برای موتورهای قفس سنجابی، خرابیهای سیم پیچی استاتور و یاتاقانها کل خرابیها به حساب می آیند و همچنین اکثر خرابیهای سیم پیچی استاتور موتور القایی از فروپاشی عایقی حلقه به حلقه ناشی می شود]2[. برخی از محققین خرابیهای موتور را چنین تقسیم بندی کرده اند: خرابی ساچمه ها ( یاتاقانها) %40-50، خرابی عایق استاتور %30-40 و خرابی قفسه روتور %5- 10 [3] که اگر خرابی حلقه به حلقه جلوگیری نشود، منجر به خطای فاز به زمین یا فاز به فاز می گردد، که خطای فاز به زمین شدید تر است. در مقالات[4] [5] نظریه تابع سیم پیچی و کاربرد آن در آنالیز گذرای موتورهای القایی تحت خطا شرح داده شده است. از این نظریه در مدلسازی خطای حلقه به حلقه استاتور استفاده شده است. علاوه بر روشهای فوق خطای استاتور موتور القایی را می توان به کمک بردارهای فضایی مورد مطالعه قرار داد[6].





فصل اول :

بررسی انواع خطا در ماشینهای القایی و علل بروز و روشهای تشخیص آنها

1-1- مقدمه:

خرابیهای یک موتور قفس سنجابی را می توان به دو دسته الکتریکی و مکانیکی تقسیم ‌کرد.هر کدام از این خرابیها در اثر عوامل و تنش های متعددی ایجاد می گردند . این تنشها در حالت کلی بصورت حرارتی ، مغناطیسی ، دینامیکی ، مکانیکی و یا محیطی می باشند که در قسمت های مختلف ماشین مانند محور ، بلبرینگ ، سیم پیچی استاتور ، ورقه های هسته روتور واستاتور و قفسه روتور خرابی ایجاد می کنند. اکثر این خرابیها در اثر عدم بکارگیری ماشین مناسب در شرایط کاری مورد نظر ، عدم هماهنگی بین طراح و کاربر و استفاده نامناسب از ماشین پدید می آید . در این قسمت سعی گردیده است ابتدا انواع تنشهای وارده بر ماشین ، عوامل پدید آمدن و اثرات آنها بررسی گردد .

قبل از بررسی انواع تنشهای وارده بر ماشین القایی بایستی موارد زیر در نظر گرفته شود :

1- با مشخص کردن شرایط کار ماشین می توان تنشهای حرارتی، مکانیکی ودینامیکی را پیش بینی نمود و ماشین مناسب با آن شرایط را انتخاب کرد . به عنوان مثال ، سیکل کاری ماشین و نوع بار آن ، تعداد دفعات خاموش و روشن کردن و فاصله زمانی بین آنها ، از عواملی هستند که تاثیر مستقیم در پدید آمدن تنشهای وارده بر ماشین خواهند داشت .

2- وضعیت شبکه تغذیه ماشین از لحاظ افت ولتاژ در حالت دائمی و شرایط راه اندازی و میزان هارمونیکهای شبکه هم در پدید آمدن نوع تنش و در نتیجه پدید آمدن خرابی در ماشین موثر خواهند بود .





1-2- بررسی انواع تنشهای وارد شونده بر ماشین القایی :

1-2-1- تنشهای موثر در خرابی استاتور : ]1[

الف ـ تنشهای گرمایی : این نوع از تنشها را می توان ناشی از عوامل زیر دانست:

◄ سیکل راه اندازی : افزایش حرارت در موتورهای القایی بیشتر هنگام راه اندازی و توقف ایجاد می شود . یک موتور در طول راه اندازی ، پنج تا هشت برابر جریان نامی از شبکه جریان می کشد تا تحت شرایط بار کامل راه بیفتد . بنابراین اگر تعداد راه اندازی های یک موتور در پریود کوتاهی از زمان زیاد گردد دمای سیم پیچی به سرعت افزایش می یابد در حالی که یک موتور القایی یک حد مجاز برای گرم شدن دارد و هرگاه این حد در نظر گرفته نشود آمادگی موتور برای بروز خطا افزایش می یابد . تنشهایی که بر اثر توقف ناگهانی موتور بوجود می آیند به مراتب تاثیر گذارتر از بقیه تنشها هستند .

◄ اضافه بار گرمایی : بر اثر تغییرات ولتاژ و همچنین ولتاژهای نامتعادل دمای سیم پیچی افزایش می یابد.

بنابر یک قاعده تجربی بازای هر %2/1-3 ولتاژ فاز نامتعادل دمای سیم پیچی فاز با حداکثر جریان خود، 25% افزایش پیدا می کند .

◄ فرسودگی گرمایی : طبق قانون تجربی با ºc10 افزایش دمای سیم پیچی استاتور عمر عایقی آن نصف می شود. بنابراین اثر معمولی فرسودگی گرمایی ، آسیب پذیری سیستم عایقی است .

ب ـ تنشهای ناشی از کیفیت نامناسب محیط کار : عواملی که باعث ایجاد این تنشهامی شود به صورت زیر است :

◄رطوبت



◄ شیمیایی

◄خراش ( سائیدگی)[1]

◄ ذرات کوچک خارجی

ج ـ تنشهای مکانیکی : عواملی که باعث ایجاد این تنشها می شوند به صورت زیر می باشند :

◄ ضربات روتور : برخورد روتور به استاتور باعث می شود که ورقه های استاتور عایق کلاف را از بین ببرد و اگر این تماس ادامه داشته باشد نتیجه این است که کلاف در شیار استاتور خیلی زود زمین می شود و این به دلیل گرمای بیش از حد تولید شده در نقطه تماس می باشند .

◄ جابجایی کلاف : نیرویی که بر کلافها وارد می شود ناشی از جریان سیم پیچی است که این نیرو متناسب با مجذور جریان می باشد ( F∝ ). این نیرو هنگام راه اندازی ماکزیمم مقدار خودش را دارد و باعث ارتعاش کلافها با دو برابر فرکانس شبکه و جابجایی آنها در هر دو جهت شعاعی و مماسی می گردد.

1-2-2- تنشهای موثر در خرابی روتور :

الف ـ تنشهای گرمایی : عواملی که باعث ایجاد این نوع تنشها در روتور می شود به صورت زیر است:

◄ توزیع غیر یکنواخت حرارت : این مسئله اغلب هنگام راه اندازی موتور اتفاق می افتد اما عدم یکنواختی مواد روتور ناشی از مراحل ساخت نیز ممکن است این مورد رابه وجود آورد. راه اندازی های مداوم و اثر پوستی، احتمال تنشهای حرارتی در میله های روتور را زیادتر می کنند .

◄جرقه زدن روتور : در روتورهای ساخته شده عوامل زیادی باعث ایجاد جرقه در روتور می شوند که برخی برای روتور ایجاد اشکال نمی کنند ( جرقه زدن غیر مخرب ) و برخی دیگر باعث بروز خطا می شوند ( جرقه زدن مخرب ) . جرقه زدن های غیر مخرب در طول عملکرد نرمال[2] موتور و بیشتر در هنگام راه اندازی رخ می دهد .

◄ نقاط داغ و تلفات بیش از اندازه : عوامل متعددی ممکن است باعث ایجاد تلفات زیادتر و ایجاد نقاط داغ شوند . آلودگی ورقه های سازنده روتور یا وجود لکه بر روی آنها ، اتصال غیر معمول میله های روتور به بدنه آن ، فاصله متغیر بین میله ها و ورقة روتور و غیره می تواند در مرحله ساخت موتور به وجود آید .البته سازندگان موتور ، آزمایشهای خاصی مانند اولتراسونیک را برای کاهش این اثرات بکار می برند.

ب ـ تنشهای مغناطیسی : عواملی مختلفی باعث ایجاد این تنشها بر روی روتور می شوند همانند، عدم تقارن فاصله هوایی و شارپیوندی شیارها ، که این عوامل و اثرات آنها در زیر مورد بررسی قرار داده شده است :

◄ نویزهای الکترومغناطیسی : عدم تقارن فاصله هوایی ، علاوه بر ایجاد یک حوزه مغناطیسی نامتقارن باعث ایجاد مخلوطی از هارمونیکها در جریان استاتور و به تبع آن در جریان روتور می گردد. اثرات متقابل هارمونیکهای جریان ، باعث ایجاد نویز یا ارتعاش در موتور می شوند . این نیروها اغلب از نا همگونی فاصله هوایی بوجود می آیند

◄ کشش نا متعادل مغناطیسی : کشش مغناطیسی نامتعادل باعث خمیده شدن شفت روتور و برخورد به سیم پیچی استاتور می شود. در عمل روتورها به طور کامل در مرکز فاصله هوایی قرار نمی گیرند. عواملی همانند، گریز از مرکز[3]، وزن روتور ، سائیدگی یا تاقانها و ... همگی بر قرار گیری روتور دورتر از مرکز اثر می گذارند .


◄ نیروهای الکترومغناطیسی : اثر شار پیوندی شیارها ناشی از عبور جریان از میله های روتور ، سبب ایجاد نیروهای الکترودینامیکی می شوند. این نیروها با توان دوم جریان میله ) ) متناسب و یکطرفه می باشند و جهت آنها به سمتی است که میله را به صورت شعاعی از بالا به پائین جابجا می کند . اندازه این نیروهای شعاعی به هنگام راه اندازی بیشتر بوده و ممکن است به تدریج باعث خم شدن میله ها از نقطه اتصال آنها به رینگ های انتهایی گردند.

ج ـ تنشهای دینامیکی : این تنشها ارتباطی به طراحی روتور ندارند بلکه بیشتر به روند کار موتورهای القایی بستگی دارند .

برخی از این تنشها در ذیل توضیح داده می شود :

◄ نیروهای گریز از مرکز[4] : هر گونه افزایش سرعت از حد مجاز ، باعث ایجاد این نیروها می شود و چون ژنراتورهای القایی در سرعت بالای سنکرون کار می کنند اغلب دچار تنشهایی ناشی از نیروی گریز از مرکز می گردند .

◄ گشتاورهای شفت : این گشتاورها معمولاً در خلال رخ دادن اتصال کوتاه و گشتاورهای گذرا تولید می شوند. اندازه این گشتاورها ممکن است تا 20 برابر گشتاور بار کامل باشد .

د ـ تنشهای مکانیکی : برخی از مهمترین خرابی های مکانیکی عبارتنداز :

◄ خمیدگی شفت روتور

◄ تورق نامناسب و یاشل بودن ورقه ها

◄ عیوب مربوط به یاتاقانها

◄ خسارت دیدن فاصله هوایی

هـ ـ تنشهای محیطی : همانند استاتور تنشهای محیطی مختلفی، می تواند بر روی روتور تاثیر گذار باشد همانند رطوبت ، مواد شیمیایی، مواد خارجی و غیره

Abrasion -1

[2] - عملکرد نرمال تعریف می شود به صورت هر موتوری که در معرض افت ولتاژ، تغییر بار (نوسانات بار)، اغتشاشات سوئیچینگ و غیره قرار می گیرد.


فهرست مطالب



چکیده........................................................................................................................................................1

مقدمه..........................................................................................................................................................2

فصل اول: بررسی انواع خطا در ماشینهای القایی و علل بروز و روشهای تشخیص آنها

1-1-مقدمه................................................................................................................................................3

1-2-بررسی انواع تنشهای وارد شونده بر ماشین القایی..............................................................................4

1-2-1-تنشهای موثر در خرابی استاتور.....................................................................................................4

1-2-2- تنشهای موثر در خرابی روتور.....................................................................................................5

1-3- بررسی عیوب اولیه در ماشینهای القایی.............................................................................................8

1-3-1- عیوب الکتریکی اولیه در ماشینهای القایی....................................................................................10

1-3-2- عیوب مکانیکی اولیه در ماشینهای القایی......................................................................................17

فصل دوم: مدلسازی ماشین القایی با استفاده از تئوری تابع سیم پیچ

2-1-تئوری تابع سیم پیچ..........................................................................................................................21

2-1-1-تعریف تابع سیم پیچ.....................................................................................................................21

2-1-2-محاسبه اندوکتانسهای ماشین با استفاده از توابع سیم پیچ..............................................................26

2-2-شبیه سازی ماشین القایی..................................................................................................................29

2-2-1- معادلات یک ماشین الکتریکی باm سیم پیچ استاتور و n سیم پیچ روتور...................................32

2-2-1-1-معادلات ولتاژ استاتور.............................................................................................................32

2-2-1-2- معادلات ولتاژ روتور..............................................................................................................33

2-2-1-3- محاسبه گشتاور الکترومغناطیسی.............................................................................................35

2-2-1-4- معادلات موتور القای سه فاز قفس سنجابی در فضای حالت...................................................36

2-3- مدلسازی خطای حلقه به حلقه و خطای کلاف به کلاف..................................................................44

فصل سوم: آنالیز موجک و تئوری شبکه های عصبی

3-1-تاریخچه موجک ها...........................................................................................................................54

3-2-مقدمه ای بر خانواده موجک ها.........................................................................................................54

3-2-1-موجک هار...................................................................................................................................55

3-2-2- موجک دابیشز..............................................................................................................................55

3-2-3- موجک کوایفلت..........................................................................................................................56

3-2-4- موجک سیملت............................................................................................................................56

3-2-5- موجک مورلت.............................................................................................................................56

3-2-6- موجک میر...................................................................................................................................57

3-3- کاربردهای موجک.........................................................................................................................57

3-4- آنالیز فوریه.....................................................................................................................................58

3-4-1- آنالیز فوریه زمان-کوتاه..............................................................................................................58

3-5-آنالیز موجک....................................................................................................................................59

3-6- تئوری شبکه های عصبی.................................................................................................................69

3-6-1- مقدمه..........................................................................................................................................69

3-6-2- مزایای شبکه عصبی....................................................................................................................69

3-6-3-اساس شبکه عصبی.......................................................................................................................69

3-6-4- انواع شبکه های عصبی................................................................................................................72

3-6-5-آموزش پرسپترونهای چند لایه......................................................................................................76

فصل چهارم:روش تشخیص خطای سیم بندی استاتور در ماشین القایی(خطای حلقه به حلقه)

4-1- اعمال تبدیل موجک.........................................................................................................................79

4-2- نتایج تحلیل موجک..........................................................................................................................81

4-3- ساختار شبکه عصبی.........................................................................................................................94

فصل پنجم: نتیجه گیری و پیشنهادات..

نتیجه گیری.........................................................................................................................................................97

پیشنهادات..................................................................................................................................................98

پیوست ها..................................................................................................................................................99

منابع و ماخذ

فارسی....................................................................................................................................................100

منابع لاتین...............................................................................................................................................101

چکیده لاتین............................................................................................................................................105



شکل1-1 : موتور القایی با ساختار مجزا شده از هم........................................................

شکل1-2: شمای قسمتی از موتور و فرکانس عبور قطب........................................................................10

شکل1-3: (الف) اتصال کوتاه کلاف به کلاف بین نقاط b وa (ب) خطای فاز به فاز..........................15

شکل2-1: برش از وسیله دو استوانه ای با قرارگیری دلخواه سیم پیچ در فاصله هوایی.............................22

شکل2-2: تابع دور کلاف متمرکز باN دور هادی مربوط به شکل2-1......................................................23

شکل2-3: تابع سیم پیچی کلاف متمرکز N دوری مربوط به شکل2-1.....................................................25

شکل 2-4: ساختار دو سیلندری با دور سیم پیچA وB.............................................................................26

شکل2-5: تابع دور کلاف 'BB شکل2-................................................................. ...............................27

شکل2-6:(الف) تابع دور فازa استاتور (ب) تابع سیم پیچی فازa استاتور............................................30

شکل2-7: تابع سیم پیچی حلقه اول روتور.............................................................................................30

شکل2-8(الف) اندوکتانس متقابل بین فازA استاتور و حلقه اول روتور (ب) مشتق اندوکتانس متقابل بین فازa استاتور و حلقه اول روتور نسبت به زاویه ....................................................................................31

شکل2-9: شکل مداری در نظر گرفته شده برای روتور قفس سنجابی ...................................................34

شکل 2-10: نمودار جریان (الف) فازa (ب)فازb (ج) فازc استاتور در حالت راه اندازی بدون بار.....41

شکل2-11: (الف) نمودار سرعت موتور در حالت راه اندازی بدون بار(ب) نمودار گشتاور الکترومغناطیسی موتور در حالت راه اندازی بدون بار........................................................................................................42

شکل2-12: نمودار جریان (الف) فازa (ب) فازb (ج) فازC استاتور در حالت دائمی بدون بار.......43

شکل2-13: فرم سیم بندی استاتور وقتی که اتصال کوتاه داخلی اتفاق افتاده است (الف) اتصال ستاره (ب) اتصال مثلث ............................................................................................................................... 45

شکل2-14: تابع دور، فازD در حالت خطای حلقه به حلقه (الف) 35دور (ب) 20دور ج) 10دور..................................................................................................................................................48

شکل2-15: تابع سیم پیچی فازD در خطای حلقه به حلقه (الف)35دور (ب)20دور (ج) 10دور..................................................................................................................................................48

شکل2-16: (الف)تابع اندوکتانس متقابل بین فازC و حلقه اول روتور (ب) تابع مشتق اندوکتانس متقابل بین فاز C و حلقه اول روتور نسبت به زاویه ........................................................................................48

شکل2-17: (الف)تابع اندوکتانس متقابل بین فازD و حلقه اول روتور (ب) تابع مشتق اندوکتانس متقابل بین فاز D و حلقه اول روتور نسبت به زاویه..........................................................................................49

شکل2-18: نمودار جریان استاتور (الف) فازa (ب)فازb (ج) فازC در خطای 10 دور در حالت راه اندازی بدون بار ...............................................................................................................................50

شکل2-19: نمودار جریان استاتور (الف) فازa (ب) فازb (ج) فازC در خطای 35 دور در حالت راه اندازی بدون بار ...............................................................................................................................51

شکل2-20: (الف) گشتاور الکترو مغناطیسی در خطای 10دور (ب) خطای 35 دور .............................52

شکل2-21: نمودار سرعت موتور در خطای حلقه به حلقه (35دور) .......................................................52

شکل2-22:نمودار جریان استاتور (الف) فازa (ب) فازb ( ج) فازC درخطای (35دور) در حالت دائمی بدون بار ............................................................................................................................53

شکل3-1:(الف) تابع موجک هار Ψ (ب) تابع مقیاس هار ...............................................................55

شکل3-2: خانواده تابع موجک دابیشزΨ ................................................................................................55

شکل3-3: (الف) تابع موجک کوایفلت Ψ (ب) تابع مقیاس کوایفلت ............................................ 56

شکل3-4: (الف) تابع موجک سیملت Ψ (ب) تابع مقیاس سیملت ..............................................56

شکل3-5: تابع موجک مورلت Ψ ..........................................................................................................57

شکل3-6: (الف) تابع موجک میر Ψ (ب) تابع مقیاس میر ............................................................57

شکل3-7: تبدیل سیگنال از حوزه زمان-دامنه به حوزه فرکانس-دامنه با آنالیز فوریه ..............................58

شکل3-8: تبدیل سیگنال از حوزه زمان- دامنه به حوزه زمان –مقیاس با آنالیز موجک ...........................59

شکل3-9: (الف) ضرایب موجک (ب) ضرایب فوریه ....................................................................60

شکل3-10: اعمال تبدیل فوریه بروی سیگنال و ایجاد سیگنالهای سینوسی در فرکانسهای مختلف............61

شکل3-11: اعمال تبدیل موجک بروی سیگنال .....................................................................................61

شکل3-12: (الف) تابع موجک Ψ ب) تابع شیفت یافته موجک ................................................62

شکل3-13: نمودار ضرایب موجک.........................................................................................................63

شکل3-14: ضرایب موجک هنگامی که از بالا به آن نگاه شود ...............................................................63

شکل3-15: مراحل فیلتر کردن سیگنال S .............................................................................................65

شکل3-16: درخت آنالیز موجک ...........................................................................................................66

شکل 3-17:درخت تجزیه موجک ..........................................................................................................66

شکل3-18: باز یابی مجدد سیگنال بوسیله موجک ...................................................................................67

شکل3-19: فرایند upsampling کردن سیگنال ....................................................................................67

شکل 3-20: سیستم filters quadrature mirror .........................................................................67

شکل 3-21: تصویر جامعی از مرفولوژی نرون منفرد .............................................................................70

شکل3-22: مدل سلول عصبی منفرد ......................................................................................................71

شکل3-23: ANN سه لایه ....................................................................................................................71

شکل3-24: منحنی تابع خطی .................................................................................................................73

شکل3-25: منحنی تابع آستانه ای ........................................................................................................73

شکل3-26: منحنی تابع سیگموئیدی ......................................................................................................74

شکل3-27: پرسپترون چند لایه ..............................................................................................................75

شکل3-28: شبکه عصبی هاپفیلد گسسته(ونگ و مندل،1991) ................................................................75

شکل 4-1: ساختار کلی تشخیص خطا ...................................................................................................79

شکل4-2: ساختار کلی پردازش سیگنال در موجک .................................................................................81

شکل4-3: تحلیل جریان استاتور درحالت خطادار (35دور) با در بی باری .....................................82

شکل4-4: : تحلیل جریان استاتور درحالت خطادار (20دور) با در بی باری ..................................82

شکل4-5: : تحلیل جریان استاتور درحالت خطادار (10دور) با در بی باری ..................................83

شکل4-6: : تحلیل جریان استاتور درحالت سالم با در بی باری .....................................................83

شکل4-7: : تحلیل جریان استاتور درحالت خطادار(35دور)با در بارداری ......................................84

شکل4-8: : تحلیل جریان استاتور درحالت خطادار(20دور)با در بارداری .......................................84

شکل4-9: : تحلیل جریان استاتور درحالت خطادار(10دور)با در بارداری .......................................85

شکل4-10:تحلیل جریان استاتور در حالت سالم با در بارداری .........................................................85

شکل4-11: ضرایب موجک برای جریان استاتور ماشین خطادار(با خطای 35دور)در بی باری با …...86

شکل4-12: ضرایب موجک برای جریان استاتور ماشین خطادار(با خطای 20 دور)در بی باری با…...….87.

شکل4-13: ضرایب موجک برای جریان استاتور ماشین خطادار(با خطای 10دور)در بی باری با …...88

شکل4-14: ضرایب موجک برای جریان استاتور ماشین سالم در بی باری با ...................................89

شکل4-15: نمای شبکه عصبی ..............................................................................................................94

شکل4-16: خطای train کردن شبکه عصبی ........................................................................................95



جدول4-1 : انرژی ذخیره شده در ماشین سالم .......................................................................................90

جدول 4-2: انرژی ذخیره شده در ماشین خطا دار (10 دور) ................................................................91

جدول 4-3: انرژی ذخیره شده در ماشین خطا دار (20 دور) .............................................................. .92

جدول 4-4: انرژی ذخیره شده در ماشین خطا دار (35 دور) ............................................................... 93

جدول4-5: نمونه های تست شبکه عصبی ........................................................................................... 96





- Eccentricity2

- 1Centrifugal Force



خرید فایل


ادامه مطلب ...

تشخیص خطای حلقه به حلقه سیم پیچی استاتور موتورهای القایی سه فاز قفس سنجابی با در نظر گرفتن اثر اشباع مغناطیسی

تشخیص خطای حلقه به حلقه سیم پیچی استاتور موتورهای القایی سه فاز قفس سنجابی با در نظر گرفتن اثر اشباع مغناطیسی


پایش وضعیت موتورهای القائی، یک فناوری کاملاً ضروری و مهم برای تشخیص به هنگام عیوب مختلف در مرحله ابتدائی است. که می‌تواند از شیوع عیب‌های غیرمنتظره در همان مراحل ابتدائی جلوگیری کند. تقریباً 30 تا40% عیوب موتورهای القائی مربوط به عیب‌های استاتور هستند. در این پایان‌نامه بررسی جامعی از عیوب مختلف موتور القائی، دلایل بوجود آورنده و روش‌های مختلف مدلسازی این عیوب صورت گرفته است. در ادامه شاخص‌های مختلف تشخیص عیب اتصال حلقه به حلقه سیم‌پیچی استاتور معرفی گردیده و از جنبه‌های مختلف مورد بررسی و مطالعه قرار گرفته‌اند.

ایده اصلی این پایان‌نامه شبیه‌سازی موتور القائی معیوب با عیب اتصال حلقه به حلقه سیم‌پیچی استاتور با در نظرگرفتن اثر اشباع مغناطیسی است و شبیه‌سازی موتور القائی سه فاز معیوب با عیب اتصال حلقه به حلقه سیم پیچی استاتور، با و بدون در نظرگرفتن اثر اشباع مغناطیسی انجام گرفته است. سپس شاخص‌های مختلف این نوع عیب استخراج شده و در هر دو شرایط خطی و اشباع با نتایج عملی مقایسه شده‌اند. همچنین در این پایان‌نامه شاخص جدیدی با ویژگی‌های مطلوب‌تری جهت شناسایی عیب حلقه به حلقه سیم پیچی استاتور معرفی گردیده است و در نهایت مطلوب‌ترین شاخص از بین شاخص‌های موجود معرفی شده است.

کلمات کلیدی : عیب حلقه به حلقه سیم‌پیچی استاتور، موتور القایی، اشباع مغناطیسی، الگوریتم ژنتیک، پدیده نوسان پاندولی، اندوکتانس استاتور

فهرست مطالب

چکیده

فصل اول

مقدمه‌ای بر عیوب مختلف موتورهای القایی سه فاز و معرفی شاخص‌های عیب حلقه به حلقه سیم‌پیچی استاتور

1-1- مقدمه

شکل1-1- انواع خطاها در سیم پیچ استاتور

1-1- عوامل پدید آورنده خطاهای سیم‌پیچ

1-2-1- تنش‌های حرارتی

1-2-2- تنش‌های الکتریکی

1-2-3- تنش‌های مکانیکی

1-2-4- تنش‌های محیطی

1-1- روش‌های تشخیص خطا در سیم‌پیچ استاتور

1-3-1- روش‌های تهاجمی

1-3-1-1- نویز صوتی

1-3-1-2- لرزش

1-3-1-3- دما

1-3-1-4- تخلیه جزیی

1-3-1-5- آنالیز گاز

1-3-1-6- ضربه

1-3-1-7- سرعت زاویه‌ای لحظه‌ای

1-3-1-8- گشتاور فاصله هوایی

1-3-1-9- شار مغناطیسی

1-3-2- روش‌های غیر‌تهاجمی

1-3-2-1- جریان خط استاتور

1-3-2-2- توان

1-3-2-3- ماتریس امپدانس توالی

1-3-2-4- ولتاژ موتور

1-3-2-5- پدیده نوسان پاندولی

1-3-3- روش‌های مبتنی بر هوش مصنوعی

1-3-3-1- روش‌های مبتنی بر سیستم‌های خبره

1-3-3-2- روش‌های مبتنی بر منطق فازی

1-3-3-3- روش‌های مبتنی بر شبکه‌های عصبی مصنوعی

1-3-3-3-1- شبکه‌های عصبی تحت نظارت

1-3-3-3-2- شبکه‌های عصبی نظارت نشده

1-3-3-4- روش‌های مبتنی بر شبکه‌های فازی- عصبی

1-3-3-5- روش‌های مبتنی بر تخمین پارامتر

فصل دوم

بستر آزمایشگاهی

2-1- مقدمه

2-1- موتور، تغذیه و بار گذاری

2-2-1- موتور

جدول 2-1- اتصالات سر سیم‌های کلاف معیوب برای ایجاد خطای مصنوعی

شکل2-1- نحوه‌ی سیم‌پیچی کلاف معیوب

شکل2-2- دیاگرام سیم‌پیچی موتور مورد استفاده

2-2-1- تغذیه موتور

2-2-1- بارگذاری موتور

2-2- جمع آوری داده های تجربی

2-2-1- حسگرهای بکار رفته و مدارات واسط آنها

شکل2-3- مجموعه ست آزمایشگاهی مورد مطالعه

فصل سوم

مدلسازی و شبیه‌سازی رفتار موتور القایی سه‌فاز قفس سنجابی تحت عیب سیم‌پیچی استاتور

3-1- مقدمه

3-2- مدل مدارهای مزدوج چندگانه موتور القایی در شرایط سالم

3-3- محاسبه عناصر ماتریس‌های اندوکتانس و مشتق آنها

3-4- اثر اشباع مغناطیسی در رفتار ماشین سالم

3-4-1- تابع معکوس فاصله هوایی در ماشین القایی اشباع پذیر

شکل3-1- منحنی عمومی تغییرات چگالی شار مغناطیسی حول فاصله هوایی (بالا) و منحنی طول معادل فاصله هوایی (پایین) در یک موتور القایی دو قطب اشباع شده، دامنه هارمونیک اصلی فضایی چگالی شار فاصله هوایی است.

3-4-2- تعیین موقعیت چگالی شار مغناطیسی در فاصله هوایی

شکل 3-2- تغییرات در حین شبیه سازی از موتور

3-4-3- استخراج روابط تحلیلی جهت محاسبه اندوکتانس‌ها و مشتق آنها

شکل 3-3- تغییرات اندوکتانس خودی فاز a استاتور بر حسب تغییرات ضریب اشباع و موقعیت چگالی شار فاصله هوایی

شکل 3-4- تغییرات اندوکتانس خودی مش 1 روتور (بالا) و مشتق آن نسبت به موقعیت روتور (پایین) بر حسب تغییرات ضریب اشباع و موقعیت روتور به ازای

شکل 3-5- تغییرات اندوکتانس متقابل فاز a استاتور و مش 1 روتور (La-1) و مشتق آن نسبت به موقعیت روتور (dLa-1) بر حسب تغییرات ضریب اشباع و موقعیت روتور به ازای

3-5- مدلسازی و شبیه‌سازی موتور القایی با عیب اتصال حلقه به حلقه در سیم‌پیچی استاتور

3-5-1- مدل‌سازی دورهای اتصال کوتاه شده

شکل 3-6- وقوع عیب اتصال حلقه به حلقه در یک فاز

3-5-2- معادلات موتور با عیب حلقه به حلقه

شکل 3-7- تغییرات تابع دور

شکل 3-8- تغییرات اندوکتانس خودی فاز d استاتور بر حسب تغییرات ضریب اشباع و موقعیت چگالی شار فاصله هوایی

شکل 3-9- تغییرات اندوکتانس متقابل فاز d استاتور و مش 1 روتور (Ld-1) و مشتق آن نسبت به موقعیت روتور (dLd-1) بر حسب تغییرات ضریب اشباع و موقعیت روتور به ازای برای فاز با 14 حلقه اتصال کوتاه شده

3-6- تعیین مقادیر

3-6-1- الگوریتم ژنتیک

شکل 3-10- روند کار الگوریتم ژنتیک

شکل 3-11- نمودار ولتاژ برحسب جریان بی باری حاصل از تخمین پارامتر و تست آزمایشگاهی

شکل 3-12- سرعت همگرایی الگوریتم ژنتیک

3-7- شبیه‌سازی و بررسی نتایج

شکل 3-13- طیف نرمالیزه جریان خط استاتور برای موتور با 14 حلقه اتصال کوتاه حاصل از نتایج عملی (a و b)، شبیه سازی با اشباع (c و d) و شبیه سازی بدون اشباع (e و f) در بی باری (a و c و e) و زیر بار کامل (b و d و f)

شکل 3-14- طیف نرمالیزه جریان خط استاتور برای موتور با 21 حلقه اتصال کوتاه حاصل از نتایج عملی (a و b)، شبیه سازی با اشباع (c و d) و شبیه سازی بدون اشباع (e و f) در بی باری (a و c و e) و زیر بار کامل (b و d و f)

جدول 3-1- نتایج عملی و شبیه‌سازی با اثر اشباع و همچنین بدون آن برای دامنه هارمونیک سوم جریان استاتور

شکل 3-15- نمودار جریان توالی منفی استاتور موتور القایی با 21 حلقه اتصال کوتاه شده زیر بار کامل حاصل از نتایج a) آزمایشگاهی، b) شبیه سازی با در نظر گرفتن اثر اشباع و c) شبیه سازی بدون در نظر گرفتن اثر اشباع

جدول 3-2- نتایج عملی و شبیه‌سازی با اثر اشباع و همچنین بدون آن برای دامنه جریان توالی منفی استاتور

شکل 3-16- شاخص CCP حاصل از شبیه سازی با و بدون اشباع مغناطیسی و عملی a) با 9 حلقه و b) 13 حلقه اتصال کوتاه شده

شکل 3-17- نوسان پاندولی حاصل از نتایج عملی

فصل چهارم

بررسی نتایج حاصل از شبیه ‌سازی

جدول 4-1- شاخص‌های عیب اتصال حلقه در موتور بی‌بار با 2% نامتعادلی تغذیه- MCCM

جدول 4-2- شاخص‌های عیب اتصال حلقه در موتور زیر نصف بار کامل با2% نامتعادلی تغذیه- MCCM

جدول 4-3- شاخص‌های عیب اتصال حلقه در موتور زیر بار کامل با 2% نامتعادلی تغذیه- MCCM

جدول 4-4- شاخص‌های عیب اتصال حلقه در موتور بی‌بار با 5% نامتعادلی تغذیه- MCCM

جدول 4-5- شاخص‌های عیب اتصال حلقه در موتور زیر نصف بار کامل با 5% نامتعادلی تغذیه- MCCM

جدول 4-6- شاخص‌های عیب اتصال حلقه در موتور زیر بار کامل با 5% نامتعادلی تغذیه- MCCM

جدول 4-7- شاخص‌های عیب اتصال حلقه در موتور بی‌بار با 2% نامتعادلی تغذیه- SMCCM

جدول 4-8- شاخص‌های عیب اتصال حلقه در موتور زیر نصف بار کامل با 2% نامتعادلی تغذیه- SMCCM

جدول 4-9- شاخص‌های عیب اتصال حلقه در موتور زیر بار کامل با 2% نامتعادلی تغذیه- SMCCM

جدول 4-10- شاخص‌های عیب اتصال حلقه در موتور بی بار با 5% نامتعادلی تغذیه- SMCCM

جدول 4-11- شاخص‌های عیب اتصال حلقه در موتور زیر نصف بار کامل با 5% نامتعادلی تغذیه-SMCCM

جدول 4-12- شاخص‌های عیب اتصال حلقه در موتور زیر بار کامل با 5% نامتعادلی تغذیه- SMCCM

جدول 4-13- بررسی حساسیت جریان توالی منفی استاتور به عوامل جنبی مختلف

شکل4-1- نمودار میله‌ای حساسیت جریان توالی منفی استاتور در برابر عوامل جانبی

جدول 4-14- بررسی حساسیت امپدانس ظاهری توالی منفی استاتور به عوامل جنبی مختلف

شکل4-2- نمودار میله ای حساسیت امپدانس ظاهری توالی منفی استاتور در برابر عوامل جانبی

جدول 4-15- بررسی حساسیت دامنه هارمونیک اصلی جریان فاز a استاتور به عوامل جنبی مختلف

جدول 4-16- بررسی حساسیت اختلاف فاز بین جریان فاز a و b استاتور به عوامل جنبی مختلف

شکل4-3- نمودار میله ای حساسیت دامنه هارمونیک اصلی جریان فاز a استاتور در برابر عوامل جانبی

شکل4-4- نمودار میله‌ای حساسیت اختلاف فاز بین جریان فاز a و b استاتور در برابر عوامل جانبی

جدول 4-17- بررسی حساسیت دامنه هارمونیک سوم جریان فاز a استاتور به عوامل جنبی مختلف

شکل4-5- شاخص CCP برای موتور

شکل4-6- نوسان پاندولی

شکل4-7- نوسان پاندولی

فصل پنجم

شاخص پیشنهادی برای شناسایی عیب سیم‌پیچی استاتور

5-1- مقدمه

5-2- روش تخمین حالت اندوکتانس معادل استاتور

5-3- چگونگی تاثیر تعداد حلقه‌های اتصال کوتاه شده بر دامنه هارمونیک‌های اندوکتانس استاتور

شکل5-1- تخمین اندوکتانس معادل فاز استاتور موتور سالم در طول زمان در بی‌باری از روی نمونه‌های ولتاژ و جریان حاصل

شکل5-2- طیف فرکانس نرمالیزه اندوکتانس معادل محاسبه شده از سیگنال‌های ولتاژ و جریان ثبت شده در آزمایشگاه برای موتور

شکل5-3- طیف فرکانس نرمالیزه اندوکتانس معادل محاسبه شده از سیگنال‌های ولتاژ و جریان حاصل از شبیه سازی موتور با 5 حلقه اتصال کوتاه شده

جدول5-1- دامنه هارمونیک‌های مختلف اندوکتانس استاتور در برابر تعداد حلقه‌های اتصال کوتاه شده در سیم پیچی استاتور

5-4- تاثیر میزان بار، نامتعادلی تغذیه و اشباع مغناطیسی بر دامنه هارمونیک‌های اندوکتانس استاتور

شکل5-4- منحنی تغییرات دامنه نرمالیزه هارمونیک‌های

شکل5-5- منحنی تغییرات دامنه نرمالیزه هارمونیکهای

جدول5-2- دامنه هارمونیک‌های مختلف اندوکتانس استاتور در برابر تغذیه متعادل و تغذیه با 2% نامتعادلی

شکل 5-6- نمودار میله‌ای حساسیت هارمونیک دوم اندوکتانس استاتور در برابر عوامل جانبی

فصل ششم

نتیجه گیری و پیشنهادات

6-1- نتیجه‌گیری

6-2- نوآوری‌های پایان‌نامه

6-3- پیشنهادات

مراجع



خرید فایل


ادامه مطلب ...

دانلود پروژه تشخیص خطا در سیم پیچی استاتور ماشین های القایی

عنوان پروژه : تشخیص خطا در سیم پیچی استاتور ماشین های القایی تعداد صفحات : ۱۳۱ شرح مختصر پروژه : همانطور که میدانیم ماشین های الکتریکی علی الخصوص ماشین های القایی یکی از مهم ترین بخش های صنعت هر کشور را تشکیل می دهند. پروژه حاضر به تشخیص خطا در سیم پیچی استاتور ماشین های القایی پرداخته است.مطالعه و تحقیق درباره تشخیص خطا در صنعت یکی از مهمترین مباحثی است که امروزه مورد توجه بسیار زیادی از مهندسین قرار گرفته است. در این پایان نامه برای تشخیص خطای سیم بندی استاتور (خطای حلقه به حلقه) روشی پیشنه ...


ادامه مطلب ...

تشخیص خطای سیم بندی استاتور با آنالیز موجک و شبکه عصبی

فرمت فایل : word(قابل ویرایش)تعداد صفحات:118 فهرست مطالب: چکیده………………………………………………………………………………………………………………………………&he ...


ادامه مطلب ...