خازن و بانک خازنی چیست؟
خازن[۱] یا انباره عنصری دوسر و پسیو است که انرژی الکتریکی را ذخیره میکند. انواع مختلفی از خازنها وجود دارد اما همه آنها حداقل دو هادی که توسط یک عایق از یکدیگر جدا شده اند را در ساختار خود دارند [۲]. هادی ها می توانند از جنس فلز یا الکترولیت باشند. عایق دی الکتریک نیز که برای افزایش ظرفیت خازن استفاده می شود می تواند از جنس شیشه، سرامیک، پلاستیک، میکا، کاغذ و … باشد. خازنها به همراه مقاومتها، در مدارات تایمینگ استفاده میشوند. همچنین از خازنها برای صاف کردن سطح تغییرات ولتاژ مستقیم استفاده میشود. از خازنها در مدارات بهعنوان فیلتر هم استفاده میشود. زیرا خازنها به راحتی سیگنالهای متناوب را عبور میدهند ولی مانع عبور سیگنالهای مستقیم میشوند.
خازن المان الکتریکی است که میتواند انرژی الکتریکی را توسط میدان الکترواستاتیکی (بار الکتریکی) در خود ذخیره کند. انواع خازن در مدارهای الکتریکی بکار میروند. خازن را با حرف C که ابتدای کلمه capacitor است نمایش میدهند.
با توجه به اینکه بار الکتریکی در خازن ذخیره میشود؛ برای ایجاد میدانهای الکتریکی یکنواخت میتوان از خازن استفاده کرد. خازنها میتوانند میدانهای الکتریکی را در حجمهای کوچک نگه دارند؛ به علاوه میتوان از آنها برای ذخیره کردن انرژی استفاده کرد.
محتویات [نهفتن]
۱ظرفیت خازن
۲ساختمان خازن
۳انواع خازن
۳.۱خازنهای ثابت
۳.۱.۱خازنهای سرامیکی
۳.۱.۲خازنهای ورقهای
۳.۱.۲.۱خازنهای کاغذی
۳.۱.۲.۲خازنهای پلاستیکی
۳.۱.۳خازنهای میکا
۳.۱.۴خازنهای الکترولیتی
۳.۱.۴.۱خازن آلومینیومی
۳.۱.۴.۲خازن تانتالیوم
۳.۲خازنهای متغیر
۳.۲.۱خازنهای تریمر
۳.۳انواع خازن بر اساس شکل ظاهری آنها
۳.۳.۱خازن مسطح
۳.۴انواع خازنها بر اساس دیالکتریک آنها
۴کاربرد خازنها در مدارات دیجیتال و انالوگ
۵شارژ یا پر کردن یک خازن
۶دشارژ یا تخلیه یک خازن
۷تأثیر ماده دیالکتریک
۸میدان الکتریکی درون خازن تخت
۹به هم بستن خازنها
۹.۱بستن خازنها به روش موازی
۹.۱.۱ظرفیت معادل در حالت موازی
۹.۲بستن خازنها بصورت متوالی
۹.۲.۱ظرفیت معادل در حالت متوالی
۱۰انرژی ذخیره شده در خازن
۱۱کد رنگی خازنها
۱۲کد عددی خازنها
۱۳جستارهای وابسته
۱۴منابع
ظرفیت خازن[ویرایش]
ظرفیت معیاری برای اندازهگیری توانایی نگهداری انرژی الکتریکی است. ظرفیت زیاد بدین معنی است که خازن قادر به نگهداری انرژی الکتریکی بیشتری است. باید گفت که ظرفیت خازنها یک کمیت فیزیکیست و به ساختمان خازن وابستهاست و به مدار و اختلاف پتانسیل بستگی ندارد.
واحد اندازه گیری ظرفیت فاراد است. ۱ فاراد واحد بزرگی است و مشخص کننده ظرفیت بالا میباشد. بنابراین استفاده از واحدهای کوچکتر نیز در خازنها مرسوم است. میکروفاراد (µF)، نانوفاراد (nF) وپیکوفاراد (pF) واحدهای کوچکتر فاراد هستند.
نسبت مقدار باری که روی صفحات انباشته میشود بر اختلاف پتانسیل دو سر باتری را ظرفیت خازن (C) گویند؛ که مقداری ثابت است.
{displaystyle C=kvarepsilon _{0}{frac {A}{d}}}{displaystyle C=kvarepsilon _{0}{frac {A}{d}}}
در این رابطه:
C = ظرفیت خازن بر حسب فاراد
Q = بار ذخیره شده برحسب کولن
V = اختلاف پتانسیل دو سر مولد برحسب ولت
ε0 = قابلیت گذر دهی خلا است که برابر است با: {displaystyle 8.85times 10^{-12}{frac {C^{2}}{N.m^{2}}}}{displaystyle 8.85times 10^{-12}{frac {C^{2}}{N.m^{2}}}}
k (بدون یکا) = ثابت دیالکتریک است که برای هر مادهای فرق دارد. تقریباً برای هوا و خلأ 1=K است و برای محیطهای دیگر مانند شیشه و روغن ۱
A = سطح خازن بر حسب {displaystyle m^{2}}{displaystyle m^{2}}
d =فاصله بین دو صفه خازن بر حسب متر(m)
چند نکته
آزمایش نشان میدهد که ظرفیت یک خازن به اندازه بار (q) و به اختلاف پتانسیل دو سر خازن (V) بستگی ندارد بلکه به نسبت q/v بستگی دارد.
بار الکتریکی ذخیره شده در خازن با اختلاف پتانسیل دو سر خازن نسبت مستقیم دارد.
ظرفیت خازن با فاصله بین دو صفحه نسبت عکس دارد.
ظرفیت خازن با مساحت هر یک از صفحات و جنس دیالکتریک (K) نسبت مستقیم دارد.
به عبارت ساده انرژی ذخیره شده در یک خازن یک فارادی ۲۲۰ ولتی میتواند یک مصرف کننده ۶،۷۲۲ وات بر ساعت را به مدت یک ساعت روشن کند .
{displaystyle {mbox{24200 W.s}}=,mathrm {frac {1}{2}} {{1Ftimes 220V}^{2}}}{displaystyle {mbox{24200 W.s}}=,mathrm {frac {1}{2}} {{1Ftimes 220V}^{2}}}
و یا انرژی ذخیره شده در یک خازن یک فارادی ۱۲ ولتی میتواند یک مصرف کننده ۰،۰۲ وات بر ساعت را به مدت یک ساعت روشن کند ( مثلا یک LED لامپ ۲۰ میلی وات ) .
{displaystyle {mbox{72 W.s}}=,mathrm {frac {1}{2}} {{1Ftimes 12V}^{2}}}{displaystyle {mbox{72 W.s}}=,mathrm {frac {1}{2}} {{1Ftimes 12V}^{2}}}
فرمول :
{displaystyle {mbox{W}}=,mathrm {frac {1}{2}} {{CV}^{2}}=J}
{displaystyle {mbox{W}}=,mathrm {frac {1}{2}} {{CV}^{2}}=J}
ساختمان خازن[ویرایش]
یک نمایش ساده از خازنی با صفحههای موازی
ساختمان داخلی خازن از دو قسمت اصلی تشکیل میشود:
صفحات هادی
عایق بین هادیها (دیالکتریک)
هرگاه دو هادی در مقابل هم قرار گرفته و در بین آنها عایقی قرار داده شود، تشکیل خازن میدهند. معمولاً صفحات هادی خازن از جنس آلومینیوم، روی ونقره با سطح نسبتاً زیاد بوده و در بین آنها عایقی (دیالکتریک) از جنس هوا، کاغذ، میکا، پلاستیک، سرامیک، اکسید آلومینیوم و اکسید تانتالیوم استفاده میشود. هر چه ضریب دیالکتریک یک ماده عایق بزرگتر باشد آن دیالکتریک دارای خاصیت عایقی بهتر است. به عنوان مثال، ضریب دیالکتریک هوا ۱ و ضریب دیالکتریک اکسید آلومینیوم ۷ میباشد. بنابراین خاصیت عایقی اکسید آلومینیوم ۷ برابر خاصیت عایقی هوا است.
انواع خازن[ویرایش]
خازنها بر حسب ثابت یا متغیر بودن ظرفیت به دو گروه کلی ثابت و متغیر تقسیمبندی میشوند. خازنها انواع مختلفی دارند و از لحاظ شکل و اندازه با یک دیگر متفاوتاند. بعضی از خازنها از روغن پر شده و بسیار حجیماند.
خازنهای ثابت[ویرایش]
این خازنها دارای ظرفیت معینی هستند که در وضعیت معمولی تغییر پیدا نمیکنند. خازنهای ثابت را بر اساس نوع ماده دیالکتریک به کار رفته در آنها تقسیم بندی و نامگذاری میکنند و از آنها در مصارف مختلف استفاده میشود. از جمله این خازنها میتوان انواع سرامیکی، میکا، ورقهای (کاغذی و پلاستیکی)، الکترولیتی، روغنی، گازی و نوع خاص فیلم (Film) را نام برد. اگر ماده دیالکتریک طی یک فعالیت شیمیایی تشکیل شده باشد آن را خازن الکترولیتی و در غیر این صورت آن را خازن خشک گویند. خازنهای روغنی و گازی در صنعت برق بیشتر در مدارهای الکتریکی برای راه اندازی و یا اصلاح ضریب قدرت به کار میروند. بقیه خازنهای ثابت دارای ویژگیهای خاصی هستند.
خازنهای ثابت:
سرامیکی
خازنهای ورقهای
خازنهای میکا
خازنهای الکترولیتی
آلومینیومی
تانتالیوم
خازنهای سرامیکی[ویرایش]
خازن سرامیکی (به انگلیسی: Ceramic capacitor) معمولترین خازن غیر الکترولیتی است که در آن دیالکتریک بکار رفته از جنس سرامیک است. ثابت دیالکتریک سرامیک بالا است، از این رو امکان ساخت خازنهای با ظرفیت زیاد در اندازه کوچک را در مقایسه با سایر خازنها بوجود آورده، در نتیجه ولتاژ کار آنها بالا خواهد بود. ظرفیت خازنهای سرامیکی معمولاً بین ۵ پیکوفاراد تا ۱/۰ میکروفاراد است. این نوع خازن به صورت دیسکی (عدسی) و استوانهای تولید میشود و بسامد کار خازنهای سرامیکی بالای ۱۰۰ مگاهرتز است. عیب بزرگ این خازنها وابسته بودن ظرفیت آنها به دمای محیط است، زیرا با تغییر دما ظرفیت خازن تغییر میکند. از این خازن در مدارهای الکترونیکی، مانند مدارهای مخابراتی و رادیویی استفاده میشود.
خازنهای ورقهای[ویرایش]
در خازنهای ورقهای از کاغذ و مواد پلاستیکی به سبب انعطافپذیری آنها، برای دیالکتریک استفاده میشود. این گروه از خازنها خود به دو صورت ساخته میشوند:
خازنهای کاغذی[ویرایش]
دیالکتریک این نوع خازن از یک صفحه نازک کاغذ متخلخل تشکیل شده که یک دیالکتریک مناسب درون آن تزریق میگردد تا مانع از جذب رطوبت گردد. برای جلوگیری از تبخیر دیالکتریک درون کاغذ، خازن را درون یک قاب محکم و نفوذناپذیر قرار میدهند. خازنهای کاغذی به علت کوچک بودن ضریب دیالکتریک عایق آنها دارای ابعاد فیزیکی بزرگ هستند، اما از مزایای این خازنها آن است که در ولتاژها و جریانهای زیاد میتوان از آنها استفاده کرد.
خازنهای پلاستیکی[ویرایش]
در این نوع خازن از ورقههای نازک پلاستیک برای دیالکتریک استفاده میشود. ورقههای پلاستیکی همراه با ورقههای نازک فلزی (آلومینیومی) به صورت لوله، در درون قاب پلاستیکی بسته بندی میشوند. امروزه این نوع خازنها به دلیل داشتن مشخصات خوب در مدارات زیاد به کار میروند. این خازنها نسبت به تغییرات دما حساسیت زیادی ندارند، به همین سبب از آنها در مداراتی استفاده میکنند که احتیاج به خازنی با ظرفیت ثابت در مقابل حرارت باشد. یکی از انواع دیالکتریکهایی که در این خازنها به کار میرود پلی استایرن (به انگلیسی: Polystyrene) است، از این رو به این خازنها «پلی استر» گفته میشود که از جمله رایجترین خازنهای پلاستیکی است. ماکزیمم بسامد کار خازنهای پلاستیکی حدود یک مگاهرتز است.
خازنهای میکا[ویرایش]
در این نوع خازن از ورقههای نازک میکا در بین صفحات خازن (ورقههای فلزی – آلومینیوم) استفاده میشود و در پایان، مجموعه در یک محفظه قرار داده میشوند تا از اثر رطوبت جلوگیری شود. ظرفیت خازنهای میکا تقریباً بین 0/01 تا ۱ میکروفاراد است. از ویژگیهای اصلی و مهم این خازنها میتوان داشتن ولتاژ کار بالا، عمر طولانی و کاربرد در مدارات فرکانس بالا را نام برد.
خازنهای الکترولیتی[ویرایش]
یک نمونه خازن الکترولیت رایج
این نوع خازنها معمولاً در رنج میکروفاراد هستند. خازنهای الکترولیتی همان خازنهای ثابت هستند، اما اندازه و ظرفیتشان از خازنهای ثابت بزرگتر است. نام دیگر این خازنها، خازن شیمیایی است. علت نامیدن آنها به این نام این است که دیالکتریک این خازنها را به نوعی مواد شیمیایی آغشته میکنند که در عمل، حالت یک کاتالیزور را دارا میباشند و باعث بالا رفتن ظرفیت خازن میشوند. برخلاف خازنهای عدسی، این خازنها دارای قطب یا پایه مثبت و منفی میباشند. روی بدنه خازن کنار پایه منفی، علامت – نوشته شدهاست. مقدار واقعی ظرفیت و ولتاژ قابل تحمل آنها نیز روی بدنه درج شدهاست. خازنهای الکترولیتی در دو نوع آلومینیومی و تانتالیومی ساخته میشوند. یکی از کاربردهای گسترده این نوع خازن استفاده در مدار یکسوساز دیودی بعنوان فیلتر dc است.
خازن آلومینیومی[ویرایش]
این خازن همانند خازنهای ورقهای از دو ورقه آلومینیومی تشکیل شدهاست. یکی از این ورقهها که لایه اکسید بر روی آن ایجاد میشود «آند» نامیده میشود و ورقه آلومینیومی دیگر نقش کاتد را دارد. ساختمان داخلی آن بدین صورت است که دو ورقه آلومینیومی به همراه دو لایه کاغذ متخلخل که در بین آنها قرار دارند هم زمان پیچیده شده و سیمهای اتصال نیز به انتهای ورقههای آلومینیومی متصل میشوند. پس از پیچیدن ورقهها آن را درون یک الکترولیت مناسب که شکل گیری لایه اکسید را سرعت میبخشد غوطهور میسازند تا دو لایه کاغذ متخلخل از الکترولیت پر شوند. سپس کل مجموعه را درون یک قاب فلزی قرار داده و با یک پولک پلاستیکی که سیمهای خازن از آن میگذرد محکم بسته میشود.
خازن تانتالیوم[ویرایش]
نوشتار اصلی : خازن تانتالیوم
خازن تانتالیوم
در این نوع خازن به جای آلومینیوم از فلز تانتالیوم استفاده میشود. زیاد بودن ثابت دیالکتریک اکسید تانتالیوم نسبت به اکسید آلومینیوم (حدوداً ۳ برابر) سبب میشود خازنهای تانتالیومی نسبت به نوع آلومینیومی درحجم مساوی دارای ظرفیت بیشتری باشند. محاسن خازن تانتالیومی نسبت به نوع آلومینیومی بدین قرار است:
ابعاد کوچکتر
جریان نشتی کمتر
عمر کارکرد طولانی
از جمله معایب این نوع خازن در مقایسه با خازنهای آلومینیومی میتوان به موارد زیر اشاره کرد:
خازنهای تانتالیوم گرانتر هستند
نسبت به افزایش ولتاژ اعمال شده در مقابل ولتاژ مجاز آن، همچنین معکوس شدن پلاریته حساسترند
قابلیت تحمل جریانهای شارژ و دشارژ زیاد را ندارند
خازنهای تانتالیوم دارای محدودیت ظرفیت هستند (حد اکثر تا ۳۳۰ میکرو فاراد ساخته میشوند)
خازنهای متغیر[ویرایش]
به طور کلی با تغییر سه عامل میتوان ظرفیت خازن را تغیییر داد: «فاصله صفحات»، «سطح صفحات» و «نوع دیالکتریک». اساس کار خازن متغیر بر مبنای تغییر سطح مشترک صفحات خازن یا تغییر ضخامت دیالکتریک است، ظرفیت یک خازن نسبت مستقیم با سطح مشترک دو صفحه خازن دارد. خازنهای متغیر عموماً ازنوع عایق هوا یا پلاستیک هستند. نوعی که به وسیله دسته متحرک (محور) عمل تغییر ظرفیت انجام میشود «واریابل» نامند و در نوع دیگر این عمل به وسیله پیچ گوشتی صورت میگیرد که به آن «تریمر» گویند. محدوده ظرفیت خازنهای واریابل ۱۰ تا ۴۰۰ پیکو فاراد و در خازنهای تریمر از ۵ تا ۳۰ پیکو فاراد است. از این خازنها در گیرندههای رادیویی برای تنظیم فرکانس ایستگاه رادیویی استفاده میشود.
در مدارات تیونینگ رادیویی از این خازنها استفاده میشود و به همین دلیل به این خازنها گاهی خازن تیونینگ هم اطلاق میشود. ظرفیت این خازنها خیلی کم و در حدود ۱۰۰ تا ۵۰۰ پیکوفاراد است و بدلیل ظرفیت پایین در مدارات تایمینگ مورد استفاده قرار نمیگیرند، در مدارات تایمینگ از خازنهای ثابت استفاده میشود و اگر نیاز باشد دوره تناوب را تغییر دهیم، این عمل به کمک مقاومت انجام میشود.
خازنهای متغیر
واریابل
تریمر
خازنهای تریمر[ویرایش]
خازنهای تریمر خازنهای متغیر کوچک و با ظرفیت بسیار پایین هستند. ظرفیت این خازنها از حدود ۱ تا ۱۰۰ پیکوفاراد است و بیشتر در تیونرهای مدارات با فرکانس بالا مورد استفاده قرار میگیرند. این خازنها معمولاً دارای ۳ پایه هستند که نوع ۲ پایه عملاً فرقی در مونتاژ ندارد.
انواع خازن بر اساس شکل ظاهری آنها[ویرایش]
خازن مسطح (خازن تخت)
خازن کروی
خازن استوانهای
خازن مسطح[ویرایش]
خازنهای مسطح از دو صفحه هادی که بین آنها عایق یا دیالکتریک قرار دارد تشکیل میشوند. صفحات هادی نسبتاً بزرگ هستند و در فاصلهای بسیار نزدیک به هم قرار میگیرند. دیالکتریک این نوع خازنها انواع مختلفی دارد و با ضریب مخصوصی که نسبت به هوا سنجیده میشود، معرفی میگردد. این ضریب را ضریب دیالکتریک مینامند. برخی دیگر بسیار کوچک و به اندازه یک دانه عدس میباشند.
انواع خازنها بر اساس دیالکتریک آنها[ویرایش]
مواد به کار رفته در خازن. از چپ: سرامیک چندلایه، دیسک سرامیکی، فیلم پلیاستر چندلایه، سرامیکی لولهای،یونولیت، فیلم پلیاستر متالیزهشده، الکترولیتی آلمینیوم.
خازن کاغذی
خازن الکترونیکی
خازن سرامیکی
خازن متغیر
کاربرد خازنها در مدارات دیجیتال و انالوگ[ویرایش]
در مدارهای دیجیتال از خازنها به عنوان عنصر ذخیره کنندهٔ انرژی استفاده میکنند که در یک لحظه شارژ و در لحظه دیگر دی شارژ میشود ولی در مدارات انالوگ از خازن جهت ایزوله کردن (جداساختن) دو منبع متناوب و مستقیم استفاده میشود. خازن در برابر ولتاژ متناوب مثل اتصال کوتاه عمل میکند و اجازه ورود یا خروج میدهد ولی در مقابل ولتاژ مستقیم همانند سد عمل میکند و اجازه ورود و یا خارج شدن ولتاژ مستقیم از مدار را به قسمت تحت ایزوله خود نمیدهد.
شارژ یا پر کردن یک خازن[ویرایش]
یک مدار خازنی-مقاومتی ساده که چگونگی شارژ خازن را نمایش میدهد.
وقتی که یک خازن بیبار را به دو سر یک باتری وصل کنیم؛ الکترونها در مدار جاری میشوند. بدین ترتیب یکی از صفحات بار مثبت و صفحه دیگر بار منفی پیدا میکند. آن صفحهای که به قطب مثبت باتری وصل شده؛ بار مثبت و صفحه دیگر بار منفی پیدا میکند. خازن پس از ذخیره کردن مقدار معینی از بار الکتریکی پر میشود. یعنی وجود اینکه کلید همچنان بستهاست، ولی جریانی از مدار عبور نمیکند و در واقع جریان به صفر میرسد. یعنی به محض اینکه یک خازن خالی بدون بار را در یک مدار به مولد متصل کردیم؛ پس از مدتی کوتاه عقربه گالوانومتر دوباره روی صفر بر میگردد. یعنی دیگر جریانی از مدار عبور نمیکند. در این حالت میگوییم خازن پرشدهاست.
دشارژ یا تخلیه یک خازن[ویرایش]
ابتدا خازنی را که پر است در نظر میگیریم. دو سر خازن را توسط یک سیم به همدیگر وصل میکنیم. در این حالت برای مدت کوتاهی جریانی در مدار برقرار میشود و این جریان تا زمانی که بار روی صفحات خازن وجود دارد برقرار است. پس از مدت زمانی جریان صفر خواهد شد. یعنی دیگر باری بر روی صفحات خازن وجود ندارد و خازن تخلیه شدهاست.
تأثیر ماده دیالکتریک[ویرایش]
وقتی که خازنی را به مولدی وصل میکنیم؛ یک میدان یکنواخت در داخل خازن بوجود میآید. این میدان الکتریکی بر توزیع بارهای الکتریکی اتمهای عایقی که در بین صفحات قرار دارد اثر میگذارد و باعث میشود که دوقطبیهای موجود در عایق طوری شکلگیری کنند؛ که در یک سمت عایق بارهای مثبت و در سمت دیگر آن بارهای منفی تجمع یابند. توزیع بارهایی که در لبههای عایق قرار دارند، بر بارهای روی صفحات خازن اثر میگذارد. یعنی بارهای منفی روی لبههای عایق، بارهای مثبت بیشتری را روی صفحات خازن جمع میکند؛ و همینطور بارهای مثبت روی لبههای عایق بارهای منفی بیشتری را روی صفحات خازن جمع میکند. بنابراین با افزایش ثابت دیالکتریک (K) میتوان بارهای بیشتری را روی خازن جمع کرد و باعث افزایش ظرفیت یک خازن شد. با گذاشتن دیالکتریک در بین صفحات یک خازن ظرفیت آن افزایش مییابد.
میدان الکتریکی درون خازن تخت[ویرایش]
در فضای بین صفحات خازن باردار میدان الکتریکی یکنواختی برقرار میشود که جهت آن همواره از صفحه مثبت خازن به سمت صفحه منفی خازن است. اندازه میدان همواره یک عدد ثابت میباشد و از فرمول زیر بدست میآید:
{displaystyle E={frac {V}{d}}}{displaystyle E={frac {V}{d}}}
که در آن:
E: میدان الکتریکی
V: اختلاف پتانسیل دو سر خازن
d: فاصله بین دو صفحه خازن
میدان الکتریکی با اختلاف پتانسیل دو سر خازن نسبت مستقیم و با فاصله بین صفحات خازن نسبت عکس دارد.
به هم بستن خازنها[ویرایش]
خازنها در مدار به دو صورت بسته میشوند:
موازی
متوالی (سری)
بستن خازنها به روش موازی[ویرایش]
خازنهایی که موازی به هم متصل شدهاند.
در بستن به روش موازی، بین خازنها دو نقطه اشتراک وجود دارد. در این روش:
اختلاف پتانسیل برای همة خازنها یکی است.
بار ذخیره شده در کل مدار برابر است با مجموع بارهای ذخیره شده در هریک از خازنها.
(طرز نشخیص این نوع بستن خازن آنست که دو خازن را هنگامی متوالی گویند که فقط و فقط از یک طرف مستقیما بهم وصل باشند و انشعابی بین آن دو نباشد)عریف انشعاب : هرگاه سه سیم یا بیشتر در یک نقطه بهم متصل باشند و به جاهای دیگر از مدار وصل باشند مثلا به یک خازن دیگر یا مقاومت دیگر یا سیم دیگری از مدار وصل باشند؛ آن گاه میگوییم انشعاب وجود دارد وگرنه سیمی که انشعاب گرفته شود و به جایی از مدار وصل نباشد دیگر انشعاب نیست.
ظرفیت معادل در حالت موازی[ویرایش]
با فرض اینکه سه خازن به نامهای ۱، ۲ و ۳ در اختیار داشته باشیم:
{displaystyle V=V_{1}=V_{2}=V_{3}}{displaystyle V=V_{1}=V_{2}=V_{3}}
{displaystyle Q=Q_{1}+Q_{2}+Q_{3}}{displaystyle Q=Q_{1}+Q_{2}+Q_{3}}
(Q:بار کل دو خازن است)
{displaystyle CV=C_{1}V_{1}+C_{2}V_{2}+C_{3}V_{3}}{displaystyle CV=C_{1}V_{1}+C_{2}V_{2}+C_{3}V_{3}}
ظرفیت کل:
{displaystyle C=C_{1}+C_{2}+C_{3}}{displaystyle C=C_{1}+C_{2}+C_{3}}
جریان کل:
{displaystyle I=I_{1}+I_{2}+I_{3}}{displaystyle I=I_{1}+I_{2}+I_{3}}
اندیسها مربوط به خازنهای ۱ ؛ ۲ و ۳ میباشد.
بنابراین هرگاه چند خازن باهم موازی باشند، ظرفیت خازن معادل برابر است با مجموع ظرفیت خازنها.
بستن خازنها بصورت متوالی[ویرایش]
بستن خازنها به صورت سری.
در بستن به روش متوالی بین خازنها یک نقطه اشتراک وجود دارد و تنها دو صفحه دو طرف مجموعه به مولد بسته شده و از مولد بار دریافت میکند؛ صفحات مقابل نیز از طریق القاء بار الکتریکی دریافت میکنند. بنابراین اندازه بار الکتریکی روی همه خازنها در این حالت باهم برابر است.(طرز نشخیص این نوع بستن خازن آنست که دو خازن را هنگامی متوالی گویند که فقط و فقط از یک طرف مستقیما بهم وصل باشند و انشعابی بین آن دو نباشد) در بستن خازنها به طریق متوالی:
بارهای روی صفحات هر خازن یکی است.
اختلاف پتانسیل دو سر مدار برابر است با مجموع اختلاف پتانسیل دو سر هر یک از خازنها.
_(در حالت متوالی بین 2 خازن، ولتاژ دو برابر و میکرو فاراد تقسیم بر دو میشود مثلاً دو خازن 25v 1000uF داریم. و اگر بطور متوالی به یکدیگر اتصال دهیم، میشود: 50v 500uF )
ظرفیت معادل در حالت متوالی[ویرایش]
بار کل:
{displaystyle Q=Q_{1}=Q_{2}=Q_{3}}{displaystyle Q=Q_{1}=Q_{2}=Q_{3}}
اختلاف پتانسیل کل:
{displaystyle V=V_{1}+V_{2}+V_{3}}{displaystyle V=V_{1}+V_{2}+V_{3}}
{displaystyle {frac {q}{C}}={frac {q_{1}}{C_{1}}}+{frac {q_{2}}{C_{2}}}+{frac {q_{3}}{C_{3}}}}{displaystyle {frac {q}{C}}={frac {q_{1}}{C_{1}}}+{frac {q_{2}}{C_{2}}}+{frac {q_{3}}{C_{3}}}}
{displaystyle {frac {1}{C}}={frac {1}{C_{1}}}+{frac {1}{C_{2}}}+{frac {1}{C_{3}}}}{displaystyle {frac {1}{C}}={frac {1}{C_{1}}}+{frac {1}{C_{2}}}+{frac {1}{C_{3}}}}
جریان کل:
{displaystyle I=I_{1}=I_{2}=I_{3}}{displaystyle I=I_{1}=I_{2}=I_{3}}
بنابراین وارون ظرفیت معادل در حالت متوالی، برابر است با مجموع وارون ظرفیت هریک از خازنها.
انرژی ذخیره شده در خازن[ویرایش]
پر شدن یک خازن باعث بوجود آمدن بار ذخیره در روی آن میشود و این هم باعث میشود که انرژی روی صفحات ذخیره گردد. کاری که در فرایند پر شدن خازن (شارژ) انجام میشود را میتوان محاسبه نمود . در واقع ، انرژی ذخیره شده در خازن برابر با نصف حاصل ضرب بار الکریکی در ولتاژ است . به عبارت دیگر ، انرژی ذخیره شده در خازن برابر نصف حاصلضرب ظرفیت خازن در مجذور ولتاژ است . به فرمولهای زیر دقت کنید[۳] :
U = 1/2 q v = 1/2 c v2
کد رنگی خازنها[ویرایش]
در خازنهای پلیستر برای سالهای زیادی از کدهای رنگی بر روی بدنه آنها استفاده میشد. در این کدها سه رنگ اول ظرفیت را نشان میدهند و رنگ چهارم تولرانس (درصد خطا) را نشان میدهد. برای مثال قهوهای - مشکی - نارنجی، به معنی ۱۰۰۰۰ پیکوفاراد یا ۱۰ نانوفاراد است. خازنهای پلیستر امروزه به وفور در مدارات الکترونیک مورد استفاده قرار میگیرند. این خازنها در برابر حرارت زیاد معیوب میشوند و بنابراین هنگام لحیمکاری باید به این نکته توجه داشت.
ترتیب رنگی خازنها به ترتیب از ۰ تا ۹ به صورت زیر است:
سیاه، قهوهای، قرمز، نارنجی، زرد، سبز، آبی، بنفش، خاکستری، سفید
خازنها با هر ظرفیتی وجود ندارند. بطور مثال خازنهای ۲۲ میکروفاراد یا ۴۷ میکروفاراد وجود دارند ولی خازنهای ۲۵ میکروفاراد یا ۱۱۷ میکروفاراد وجود ندارند. دلیل اینکار چنین است:
فرض کنیم بخواهیم خازنها را با اختلاف ظرفیت ده تا ده تا بسازیم. مثلاً ۱۰ و ۲۰ و ۳۰ و.... در ابتدا خوب بهنظر میرسد ولی وقتی که به ظرفیت مثلاً ۱۰۰۰ برسیم چه رخ میدهد؟ مثلاً ۱۰۰۰ و ۱۰۱۰ و ۱۰۲۰ و... که در اینصورت اختلاف بین خازن ۱۰۰۰ میکروفاراد با ۱۰۱۰ میکروفاراد بسیار کم است و فرقی با هم ندارند پس این مساله معقول بهنظر نمیرسد. برای ساختن یک رنج محسوس از ارزش خازنها، میتوان برای اندازه ظرفیت از مضارب استاندارد ۱۰ استفاده نمود. مثلاً ۷/۴ - ۴۷ - ۴۷۰ و... و یا ۲/۲ - ۲۲۰ - ۲۲۰۰ و...
کد عددی خازنها[ویرایش]
در خازنهای الکترولیتی معمولاً ظرفیت به صورت یک عدد مشخص با واحد مربوطهاش (pf,nf و...) در کنار ولتاژ ذخیره سازی (حداکثر ولتاژ که در خازن ذخیره میشود) نوشته شدهاست. اما در سایر خازنها یک عدد ۳ رقمی به همراه یک حرف انگلیسی (k , j یا m)نوشته شدهاست. برای محاسبهٔ ظرفیت این نوع خازنها دو عدد اول را در ده به توان عدد سوم ضرب میکنیم که واحد را بر حسبپیکوفاراد به دست میدهد. برای مثال اگر روی خازنی عدد 684k نوشته شده باشد به این معنی است که ظرفیت این خازن برابر است با: ۱۰۰۰۰×۶۸ پیکوفاراد یعنی ۶۸۰ نانوفاراد یا ۰٫۶۸ میکروفاراد. حروف نیز به ترتیب بیانگر خطاهای پنج درصد برای j ده درصد برای k و بیست درصد برای m میباشند.[۴]
جستارهای وابسته[ویرایش]
خازن الکترولیتی
جایابی بهینه خازن با هدف بهبود پروفیل ولتاژ و کمینه سازی تلفات توان شبکه توزیع واقعی با مدل سازی بارهای مختلف
شبکه های توزیع دارای بارهای متنوعی اند که این بارها مقادیر متفاوتی از توان راکتیو را مصرف میکنند. با در نظر گرفتن تاثیر نوع بار روی محل و اندازه ی بانکهای خازنی در سیستمهای توزیع، در این پایان نامه، یک روش بدیع جهت مدلسازی بارهای مختلف شبکه به منظور بهبود پروفیل ولتاژ و کاهش تلفات توان در حضور خازن شنت انجام میگیرد. برای این منظور، دو مدل ارائه میشود: الف) تجاری- خانگی- کشاورزی-عمومی- صنعتی و ب) امپدانس ثابت - جریان ثابت - توان ثابت. در واقع برتری اصلی این پایاننامه نزدیک کردن مطالعه به دنیای واقعیست، چرا که تقریبا تمامی مطالعات انجام شده در زمینه جایابی بهینهی خازن اساسا از تاثیر نوع بار بر محل و ظرفیت بهینه خازن نصب شده اغماض کردهاند، حال آنکه این پایاننامه اثبات خواهد کرد که در نظرگیری مدل بار متفاوت روی محل/ ظرفیت خازن تاثیرگذار خواهد بود. قابلیت دیگر این پایاننامه، فرمولبندی تابع هدف به صورت یک مسالهی چند هدفه است. برای این منظور، انحراف ولتاژ به تابع تکهدفه افزوده شده است. مساله فوق با استفاده از الگوریتم بهینهسازی اجتماع ذرات[1] (PSO) حل خواهد شد. جهت اثبات تاثیر مدلسازی پیشنهادی بار روی پاسخهای مساله جایابی بهینهی خازن، سناریوهای زیر بکار میرود: مدلسازی بار و بدون آن با حضور خازن و بدون حضور آن.
کلید واژه:
جایابی بهینه ی خازن
مدلسازی بار، الگوریتم بهینه سازی اجتماع ذرات، شبکه ی توزیع.
فهرست مطالب
عنوان.................................................................................................................. صفحه
فصل اول: کلیات تحقیق
1-1 دیباچه...................................................................................................................................................... .2
1-2 مطالعهی تاثیرگذاری خازن روی شبکه................................................................................................. .4
1-2-1 کاربرد بانک خازنی................................................................................................................ ..9
1-2-2 مکان بانک خازنی بهینه.......................................................................................................... 10
1-2-3 مزایای خازن شنت.................................................................................................................. 12
1-2-4 گزینههای عملی برای کاهش تلفات....................................................................................... 13
1-3 معیار طراحی............................................................................................................................................ 14
1-4 جبرانسازی توان راکتیو......................................................................................................................... 15
1-5 اصلاح ضریب قدرت............................................................................................................................. 17
1-6 محدوده و هدف پایاننامه....................................................................................................................... 19
1-7 بیان مسأله اساسی تحقیق......................................................................................................................... 20
1-8 طرح کلی پایاننامه.................................................................................................................................. 22
فصل دوم: مبانی نظری و پیشینه تحقیق
2-1 دیباچه...................................................................................................................................................... 24
2-2 روشهای تحلیلی.................................................................................................................................... 24
2-3 روشهای برنامهریزی ریاضی................................................................................................................. 25
2-4 روشهای ابتکاری................................................................................................................................... 27
2-5 روشهای مبتنی بر هوش مصنوعی......................................................................................................... 29
2-5-1 الگوریتم ژنتیک..................................................................................................................... 29
2-5-2 سیستمهای خبره...................................................................................................................... 31
2-5-3 آبکاری شبیهسازی شده........................................................................................................ 32
2-5-4 شبکههای عصبی مصنوعی...................................................................................................... 34
2-5-5 تئوری مجموعه فازی.............................................................................................................. 35
فصل سوم: بهینهسازی اجتماع ذرات
3-1 دیباچه...................................................................................................................................................... 39
3-2 کاربرد بهینهسازی اجتماع ذرات در سیستمهای قدرت......................................................................... 40
3-2-1 جایابی و تعیین ظرفیت بهینهی خازن........................................................................................ 41
3-2-2 پخش بار اقتصادی.................................................................................................................. 42
3-2-3 پخش بار بهینه......................................................................................................................... 42
3-2-4 کنترل ولتاژ و توان راکتیو بهینه................................................................................................ 43
3-2-5 طراحی پایدارسازی سیستم قدرت........................................................................................... 44
3-3 مفهوم PSO............................................................................................................................................ 44
3-4 عناصر اصلی الگوریتم PSO................................................................................................................. 45
3-5 اجرای الگوریتم PSO........................................................................................................................... 44
3-6 مزایای الگوریتم PSO به سایر الگوریتمهای تکاملی.......................................................................... 52
فصل چهارم: بهینهسازی تابع هدف
4-1 دیباچه...................................................................................................................................................... 55
4-2 بیان مساله................................................................................................................................................. 57
4-3 قیود......................................................................................................................................................... 59
4-4 مدل بار پیشنهادی.................................................................................................................................... 61
4-4-1 مدلسازی بار از لحاظ نوع مصرف......................................................................................... 61
4-4-2 مدلسازی بار از لحاظ توان، امپدانس و جریان ثابت............................................................... 63
4-5 حل مساله جایابی خازن با استفاده از الگوریتم PSO............................................................................ 64
فصل پنجم: نتایج شبیهسازی
5-1 دیباچه...................................................................................................................................................... 67
5-2 جایابی دو خازن...................................................................................................................................... 68
5-3 جایابی چهار خازن.................................................................................................................................. 71
5-4 جایابی شش خازن................................................................................................................................... 74
5-5 جایابی هشت خازن................................................................................................................................. 77
5-6 جمع بندی................................................................................................................................80
فصل ششم: بحث و نتیجهگیری
6-1 دیباچه...................................................................................................................................................... 82
6-2 نتیجهگیری.............................................................................................................................................. 82
6-3 پیشنهادها.................................................................................................................................................. 84
پیوستها
الف: اطلاعات شبکهی نمونه.......................................................................................................................... 86
مراجع.............................................................................................................................................................. 89
فهرست جدولها
جدول (1-1): مقایسهی نرخهای سود به هزینهی روشهای کاهش تلفات...........................................14
جدول (4-1): ضریب تغییر بار...................................................................................................................... 62
جدول(5-1): مقادیر پارامترهای جایابی خازن در حضور دو بانک خازنی.................................................. 69
جدول(5-2): مکان و ظرفیت بهینهی نصب شده دو بانک خازنی............................................................... 69
جدول(5-3): مقادیر پارامترهای جایابی خازن در حضور چهار بانک خازنی.............................................. 72
جدول(5-4): مکان و ظرفیت بهینهی نصب شده چهار بانک خازنی........................................................... 72
جدول(5-5): مقادیر پارامترهای جایابی خازن در حضور شش بانک خازنی............................................... 75
جدول(5-6): مکان و ظرفیت بهینهی نصب شده شش بانک خازنی........................................................... 75
جدول(5-7): مقادیر پارامترهای جایابی خازن در حضور هشت بانک خازنی............................................. 78
جدول(5-8): مکان و ظرفیت بهینهی نصب شده هشت بانک خازنی.......................................................... 78
جدول(الف-1): اطلاعات مربوط به خطوط و توانهای مصرفی شبکهی نمونه.......................................... 88
فهرست شکلها
شکل (1-1): دیاگرام فازوری ولتاژ با ضریب قدرت پسفاز........................................................................ 6
شکل (1-2): دیاگرام فازوری ولتاژ با ضریب قدرت پیشفاز...................................................................... 6
شکل (1-3): دیاگرام فازروی یک مدار با ضریب قدرت پسفاز................................................................ 8
شکل (1-4): نمایش مدل بار معادل فیدر شعاعی.......................................................................................... 17
شکل (1-5): بهترین مکان بانک خازنی برای اصلاح ضریب قدرت.......................................................... 18
شکل(1-6): مثلث توان.................................................................................................................................. 19
شکل(2-1): ساختار شبکهی عصبی............................................................................................................... 34
شکل(3-1): مفهوم پایهی الگوریتم PSO..................................................................................................... 45
شکل(3-2): شبهکد گام 1 الگوریتم PSO................................................................................................... 47
شکل(3-3): شبهکد گام 2 الگوریتم PSO................................................................................................... 48
شکل(3-4): شبهکد گام 3 الگوریتم PSO................................................................................................... 48
شکل(3-5): شبهکد گام 4 الگوریتم PSO................................................................................................... 49
شکل(3-6): جمعیت بعد از چند تکرار در یک فضای دو بعدی................................................................. 50
شکل(3-7): شبه کد الگوریتم PSO............................................................................................................ 51
شکل(3-8): فلوچارت حل نحوهی بهینهسازی الگوریتم PSO.................................................................. 53
شکل(4-1): حل مسالهی جایابی بهینهی خازن با استفاده از الگوریتم PSO.............................................. 65
شکل(5-1): شبکهی 33 شینهی نمونه............................................................................................................ 67
شکل(5-2): نمایش نموداری پروفیل ولتاژ و توانهای شبکه در حضور دو بانک خازنی.......................... 71
شکل(5-3): نمایش نموداری پروفیل ولتاژ و توانهای شبکه در حضور چهار بانک خازنی...................... 74
شکل(5-4): نمایش نموداری پروفیل ولتاژ و توانهای شبکه در حضور شش بانک خازنی....................... 77
شکل(5-5): نمایش نموداری پروفیل ولتاژ و توانهای شبکه در حضور هشت بانک خازنی..................... 80
شکل(الف-1): شبکهی 33 شینهی نمونه....................................................................................................... 87
خازن گذاری در شبکه های توزیع برای کاهش تلفات و بهبود ضریب توان
فهرست مطالب
عنوان صفحه
فصل اول :
مفاهیم اساسی 7
فصل دوم :
منابع مصرف کننده توان راکتیو سلفی در شبکه 21
فصل سوم :
اثرات خازن های موازی در سیستمهای قدرت 34
فصل چهارم :
توابع هدف 64
فصل پنجم :
بررسی چند مقاله از IEEE 80
ضمائم 104
مفاهیم اساسی1
1-1 ساختار مکانیکی و الکتریکی خازن2
هرگاه اختلاف پتانسیلی بین دو صفحه ی هادی که در فاصله ی کمی از هم قرار گرفته اند، اعمال شود انرژی الکترواستاتیکی در سیستم موجود ذخیره می گردد که صفحات فلزی بعنوان الکترود و فضای بین آنها دی الکتریک3 نامیده می شود. اندازه ی توانایی عایق یا دی الکتریک در ذخیره سازی انرژی الکتروستاتیکی ثابت دی الکتریک یا پرمابیلیته نامیده می شود. ثابت دی الکتریک تمام عایق ها معمولاً نسبت به هوا سنجیده می شود که ضریبی از دی الکتریک هوا می باشد. ثابت دی الکتریک هوا برابر8.85×10-12 است که آنرا با علامت می شناسیم و واحد آن نیز فاراد برمتر است (F/m) و ثابت نسبی دی الکتریک تمام عایقها که ضریبی از ثابت هوا هستند را با εr نمایش می دهیم که این مقدار برای هوا یک است. در جدول 1-1 اندازه ای εr برای بعضی عایقها آورده شده است.
ماده εr
Air هوا 1
Ceramic سرامیک 3000
Glass شیشه 7
Castor oil روغن معدنی 2.12
Mica میکا 5.16
Polystyrene پلی استر 2.9
جدول (1-1) ثابت دی الکتریک نسبی برخی مواد
2-1) ظرفیت خازن و انرژی ذخیره شده در خازن
میزان باری که یک خازن می تواند در خود ذخیره کند توسط فاکتوری به نام C نمایش داده می شود. این فاکتور برابر با ظرفیتی است بین صفحات یک خازن که ولتاژ یک ولت روی آن قرار گرفته و باریک کولمب را ذخیره کرده است.
(1-1)
واحد این فاکتور فاراد (F) می باشد با توجه به اینکه فاراد واحد بسیار بزرگی است لذا از اجزاء آن مانند میکروفاراد، نانوفاراد و پیکوفاراد استفاده می گردد.
در یک خازن ظرفیت از رابطه ای زیر بدست می آید.
(2-1)
در سری و موازی کردن خازنها ظرفیت معادل هرکدام از روابط زیر بدست می آید.
خازن های سری (3-1)
خازن های موازی (4-1)
و انرژی ذخیره شده در میان صفحات خازن از رابطهی زیر بدست می آید.
(5-1)
همانطوری که از روابط بالا می توان فهمید با موازی کردن خازن ها ظرفیت معادل افزایش پیدا می کند و به ازای یک ولتاژ مشخص مقدار انرژی ذخیره شده در خازن افزایش پیدا می کند و نیز براساس معادله ای 1-1 برای افزایش Q در یک ولتاژ مشخص باید مقدار C افزایش یابد.
word: نوع فایل
سایز:13.6 MB
تعداد صفحه:117
کد رنگی خازن ها
در خازن های پلیستر برای سالهای زیادی از کدهای رنگی بر روی بدنه آنها استفاده می شد . در این کد ها سه رنگ اول ظرفیت را نشان می دهند و رنگ چهارم تولرانس ا نشان می دهد .
برای مثال قهوه ای - مشکی - نارنجی به معنی 10000 پیکوفاراد یا 10 نانوفاراد است .
خازن های پلیستر امروزه به وفور در مدارات الکترونیک مورد استفاده قرار می گیرند . این خازنها در برابر حرارت زیاد معیوب می شوند و بنابراین هنگام لحیمکاری باید به این نکته توجه داشت .
کد رنگی خازنها
رنگ شماره
سیاه 0
قهوه ای 1
قرمز 2
نارنجی 3
زرد 4
سبز 5
آبی 6
بنفش 7
خاکستری 8
سفید 9
خازن ها با هر ظرفیتی وجود ندارند . بطور مثال خازن های 22 میکروفاراد یا 47 میکروفاراد وجود دارند ولی خازن های 25 میکروفاراد یا 117 میکروفاراد وجود ندارند .
دلیل اینکار چنین است :
فرض کنیم بخواهیم خازن ها را با اختلاف ظرفیت ده تا ده تا بسازیم . مثلاً 10 و 20 و 30 و . . . به همین ترتیب . در ابتدا خوب بنظر می رسد ولی وقتی که به ظرفیت مثلاً 1000 برسیم چه رخ می دهد ؟
مثلاً 1000 و 1010 و 1020 و . . . که در اینصورت اختلاف بین خازن 1000 میکروفاراد با 1010 میکروفاراد بسیار کم است و فرقی با هم ندارند پس این مسئله معقول بنظر نمی رسد .
برای ساختن یک رنج محسوس از ارزش خازن ها ، میتوان برای اندازه ظرفیت از مضارب استاندارد 10 استفاده نمود . مثلاً 7/4 - 47 - 470 و . . . و یا 2/2 - 220 - 2200 و . . .
خازن های متغیر :
در مدارات تیونینگ رادیوئی از این خازن ها استفاده می شود و به همین دلیل به این خازنها گاهی خازن تیونینگ هم اطلاق می شود . ظرفیت این خازن ها خیلی کم و در حدود 100 تا 500 پیکوفاراد است و بدلیل ظرفیت پائین در مدارات تایمینگ مورد استفاده قرار نمی گیرند .
در مدارات تایمینگ از خازن های ثابت استفاده می شود و اگر نیاز باشد دوره تناوب را تغییر دهیم ، این عمل بکمک مقاومت انجام می شود .
خازن های تریمر :
خازن های تریمر خازن های متغییر کوچک و با ظرفیت بسیار پائین هستند . ظرفیت این خازن ها از حدود 1 تا 100 پیکوفاراد ماست و بیشتر در تیونرهای مدارات با فرکانس بالا مورد استفاده قرار می گیرند .
مقاومت الکتریکی چیست
رسانای الکتریکی (هادی)به هر ماده ای که بتواند جریان الکتریکی را از خود عبور دهد رسانای الکتریکی یا هادی الکتریک (هدایت کننده جریان الکتریکی ) گویند مانند فلزات و به هر ماده که نتواند جریان الکتریکی را از خود عبور دهد نارسانا یا غیرهادی گویند مانند پلاستیک ، چرم ، کاغذ وغیره
word: نوع فایل
سایز:68.8 KB
تعداد صفحه:27
خازن و انواع آن
مقدمه
خازن وسیلهای الکتریکی است که در مدارهای الکتریکی اثر خازنی ایجاد میکند. اثر خازنی خاصیتی است که سب میشود مقداری انرژی الکتریکی در یک میدان الکترواستاتیک ذخیره شود و بعد از مدتی آزاد گردد. به تعبیر دیگر ، خازنها المانهایی هستند که میتوانند مقداری الکتریسیته را به صورت یک میدان الکترواستاتیک در خود ذخیره کنند. همانگونه که یک مخزن آب برای ذخیره کردن مقداری آب مورد استفاده قرار میگیرد. خازنها به اشکال گوناگون ساخته میشوند و متداولترین آنها خازنهای مسطح هستند.
این نوع خازنها از دو صفحه هادی که بین آنها عایق یا دی الکتریک قرار دارد. صفحات هادی نسبتا بزرگ هستند و در فاصلهای بسیار نزدیک به هم قرار میگیرند. دی الکتریک انواع مختلفی دارد و با ضریب مخصوصی که نسبت به هوا سنجیده میشود، معرفی میگردد. این ضریب را ضریب دی الکتریک مینامند. خازنها به دو دسته کلی ثابت و متغیر تقسیم بندی میشوند. خازنها انواع مختلفی دارند و از لحاظ شکل و اندازه با یک دیگر متفاوتاند. بعضی از خازنها از روغن پر شده و بسیار حجیماند. برخی دیگر بسیار کوچک و به اندازه یک دانه عدس میباشند. خازنها بر حسب ثابت یا متغیر بودن ظرفیت به دو گروه تقسیم میشوند: خازنهای ثابت و خازنهای متغیر.
خازنهای ثابت
این خازنها دارای ظرفیت معینی هستند که در وضعیت معمولی تغییر پیدا نمیکنند. خازنهای ثابت را بر اساس نوع ماده دی الکتریک به کار رفته در آنها تقسیم بندی و نام گذاری میکنند و از آنها در مصارف مختلف استفاده میشود. از جمله این خازنها میتوان انواع سرامیکی ، میکا ، ورقهای ( کاغذی و پلاستیکی ) ،الکترولیتی ، روغنی ، گازی و نوع خاص فیلم (Film) را نام برد. اگر ماده دی الکتریک طی یک فعالیت شیمیایی تشکیل شده باشد آن را خازن الکترولیتی و در غیر این صورت آن را خازن خشک گویند. خازنهای روغنی و گازی در صنعت برق بیشتر در مدارهای الکتریکی برای راه اندازی و یا اصلاح ضریب قدرت به کار میروند. بقیه خازنهای ثابت دارای ویژگیهای خاصی هستند.
word: نوع فایل
سایز:179 KB
تعداد صفحه:17
خازن در جریان متناوب
1- عکس العمل خازنی
2- محاسبه مقاومت خازنی معادل در مدارهای سری
3- محاسبه مقاومت خازنی معادل در مدارهای موازی
1- در مدار شکل A با بستن کلید چه اتفاقی می افتد؟
چون مدار بصورت سری می باشد.
چون جریان عبوری مدار از جریان فیوز بیشتر می باشد پس فیوز می سوزد.
2- در مدار شکل B مقاومت کل تقریبا چقدر است؟
چون خازنها بصورت سری می باشند
word: نوع فایل
سایز:30.2 KB
تعداد صفحه:69
ساختمان خازن
مقدمه
خازن المان الکتریکی است که میتواند انرژی الکتریکی را توسط میدان الکترواستاتیکی (بار الکتریکی) در خود ذخیره کند. انواع خازن در مدارهای الکتریکی بکار میروند. خازن را با حرف C که ابتدای کلمه capacitor است نمایش میدهند. ساختمان داخلی خازن از دو قسمت اصلی تشکیل میشود:
الف – صفحات هادی
ب – عایق بین هادیها (دی الکتریک)
ساختمان خازن
هرگاه دو هادی در مقابل هم قرار گرفته و در بین آنها عایقی قرار داده شود، تشکیل خازن میدهند. معمولا صفحات هادی خازن از جنس آلومینیوم ، روی و نقره با سطح نسبتا زیاد بوده و در بین آنها عایقی (دی الکتریک) از جنس هوا ، کاغذ ، میکا ، پلاستیک ، سرامیک ، اکسید آلومینیوم و اکسید تانتالیوم استفاده میشود. هر چه ضریب دی الکتریک یک ماده عایق بزرگتر باشد آن دی الکتریک دارای خاصیت عایقی بهتر است. به عنوان مثال ، ضریب دی الکتریک هوا 1 و ضریب دی الکتریک اکسید آلومینیوم 7 میباشد. بنابراین خاصیت عایقی اکسید آلومینیوم 7 برابر خاصیت عایقی هوا است.
انواع خازن
الف- خازنهای ثابت
• سرامیکی
• خازنهای ورقهای
• خازنهای میکا
• خازنهای الکترولیتی
• آلومینیومی
• تانتالیوم
ب- خازنهای متغیر
• واریابل
• تریمر
انواع خازن بر اساس شکل ظاهری آنها
1. مسطح
2. کروی
3. استوانهای
انواع خازن بر اساس دی الکتریک آنها
1. خازن کاغذی
2. خازن الکترونیکی
3. خازن سرامیکی
4. خازن متغییر
خازن مسطح
خازن تخت)
دو صفحه فلزی موازی که بین آنها عایقی به نام دی الکتریک قرار دارد، مانند (هوا ، شیشه). با اتصال صفحات خازن به یک مولد میتوان خازن را باردار کرد. اختلاف پتانسیل بین دو سر صفحات خازن برابر اختلاف پتانسیل دو سر مولد خواهد بود.
خازن کروی
ظرفیت خازن (C)
نسبت مقدار باری که روی صفحات انباشته میشود بر اختلاف پتانسیل دو سر باتری را ظرفیت خازن گویند؛ که مقداری ثابت است.
C = kε0 A/d
C = ظرفیت خازن بر حسب فاراد
Q = بار ذخیره شده برحسب کولن
V = اختلاف پتانسیل دو سر مولد برحسب ولت
word: نوع فایل
سایز:259 KB
تعداد صفحه:21
اثر خازن
خازن وسیلهای الکتریکی است که در مدارهای الکتریکی اثر خازنی ایجاد میکند. اثر خازنی خاصیتی است که سب میشود مقداری انرژی الکتریکی در یک میدان الکترواستاتیک ذخیره شود و بعد از مدتی آزاد گردد. به تعبیر دیگر ، خازنها المانهایی هستند که میتوانند مقداری
خازن وسیلهای الکتریکی است که در مدارهای الکتریکی اثر خازنی ایجاد میکند. اثر خازنی خاصیتی است که سب میشود مقداری انرژی الکتریکی در یک میدان الکترواستاتیک ذخیره شود و بعد از مدتی آزاد گردد. به تعبیر دیگر ، خازنها المانهایی هستند که میتوانند مقداری الکتریسیته را به صورت یک میدان الکترواستاتیک در خود ذخیره کنند. همانگونه که یک مخزن آب برای ذخیره کردن مقداری آب مورد استفاده قرار میگیرد. خازنها به اشکال گوناگون ساخته میشوند و متداولترین آنها خازنهای مسطح هستند.
این نوع خازنها از دو صفحه هادی که بین آنها عایق یا دی الکتریک قرار دارد. صفحات هادی نسبتا بزرگ هستند و در فاصلهای بسیار نزدیک به هم قرار میگیرند. دی الکتریک انواع مختلفی دارد و با ضریب مخصوصی که نسبت به هوا سنجیده میشود، معرفی میگردد. این ضریب را ضریب دی الکتریک مینامند. خازنها به دو دسته کلی ثابت و متغیر تقسیم بندی میشوند. خازنها انواع مختلفی دارند و از لحاظ شکل و اندازه با یک دیگر متفاوتاند. بعضی از خازنها از روغن پر شده و بسیار حجیماند. برخی دیگر بسیار کوچک و به اندازه یک دانه عدس میباشند. خازنها بر حسب ثابت یا متغیر بودن ظرفیت به دو گروه تقسیم میشوند: خازنهای ثابت و خازنهای متغیر.
خازنهای ثابت
این خازنها دارای ظرفیت معینی هستند که در وضعیت معمولی تغییر پیدا نمیکنند. خازنهای ثابت را بر اساس نوع ماده دی الکتریک به کار رفته در آنها تقسیم بندی و نام گذاری میکنند و از آنها در مصارف مختلف استفاده میشود. از جمله این خازنها میتوان انواع سرامیکی ، میکا ، ورقهای ( کاغذی و پلاستیکی ) ،الکترولیتی ، روغنی ، گازی و نوع خاص فیلم (Film) را نام برد. اگر ماده دی الکتریک طی یک فعالیت شیمیایی تشکیل شده باشد آن را خازن الکترولیتی و در غیر این صورت آن را خازن خشک گویند. خازنهای روغنی و گازی در صنعت برق بیشتر در مدارهای الکتریکی برای راه اندازی و یا اصلاح ضریب قدرت به کار میروند. بقیه خازنهای ثابت دارای ویژگیهای خاصی هستند.
خازنهای متغیر
به طور کلی با تغییر سه عامل میتوان ظرفیت خازن را تغیییر داد: "فاصله صفحات" ، "سطح صفحات" و "نوع دی الکتریک". اساس کار خازن متغیر بر مبنای تغییر سطح مشترک صفحات خازن یا تغییر ضخامت دی الکتریک است، ظرفیت یک خازن نسبت مستقیم با سطح مشترک دو صفحه خازن دارد. خازنهای متغیر عموما ازنوع عایق هوا یا پلاستیک هستند. نوعی که به وسیله دسته متحرک (محور) عمل تغییر ظرفیت انجام میشود "واریابل" نامند و در نوع دیگر این عمل به وسیله پیچ گوشتی صورت میگیرد که به آن "تریمر" گویند. محدوده ظرفیت خازنهای واریابل 10 تا 400 پیکو فاراد و در خازنهای تریمر از 5 تا 30 پیکو فاراد است. از این خازنها در گیرندههای رادیویی برای تنظیم فرکانس ایستگاه رادیویی استفاده میشود.
word: نوع فایل
سایز: 25.5 KB
تعداد صفحه:15
خازن
خازن ها انرژی الکتریکی را نگهداری می کنند و به همراه مقاومت ها ، در مدارات تایمینگ استفاده می شوند . همچنین از خازن ها برای صاف کردن سطح تغییرات ولتاژ مستقیم استفاده می شود . از خازن ها در مدارات بعنوان فیلتر هم استفاده می شود . زیرا خازن ها به راحتی سیگنالهای غیر مستقیم AC را عبور می دهند ولی مانع عبور سیگنالهای مستقیم DC می شوند .
ظرفیت :
ظرفیت معیاری برای اندازه گیری توانائی نگهداری انرژی الکتریکی است . ظرفیت زیاد بدین معنی است که خازن قادر به نگهداری انرژی الکتریکی بیشتری است . واحد اندازه گیری ظرفیت فاراد است . 1 فاراد واحد بزرگی است و مشخص کننده ظرفیت بالا می باشد . بنابراین استفاده از واحدهای کوچکتر نیز در خازنها مرسوم است . میکروفاراد µF ، نانوفاراد nF و پیکوفاراد pF واحدهای کوچکتر فاراد هستند .
µ means 10-6 (millionth), so 1000000µF = 1F
n means 10-9 (thousand-millionth), so 1000nF = 1µF
p means 10-12 (million-millionth), so 1000pF = 1nF
انواع مختلفی از خازن ها وجود دارند که میتوان از دو نوع اصلی آنها ، با پلاریته ( قطب دار ) و بدون پلاریته ( بدون قطب ) نام برد .
خازنهای قطب دار :
الف - خازن های الکترولیت
در خازنهای الکترولیت قطب مثبت و منفی بر روی بدنه آنها مشخص شده و بر اساس قطب ها در مدارات مورد استفاده قرار می گیرند . دو نوع طراحی برای شکل این خازن ها وجود دارد . یکی شکل اَکسیل که در این نوع پایه های یکی در طرف راست و دیگری در طرف چپ قرار دارد و دیگری رادیال که در این نوع هر دو پایه خازن در یک طرف آن قرار دارد . در شکل نمونه ای از خازن اکسیل و رادیال نشان داده شده است .
word: نوع فایل
سایز: 11.2 KB
تعداد صفحه:9
تست انواع خازن توسط مولتی متر
تست انواع خازن :تست خازنهای کمتر از10 نانو فاراد بسادگی توسط مولتی متر انجام نمی شود و فقط با خازن سنج تست می شود در صورتیکه خازن سنج ندارید روشهای زیادی برای تست این
تست انواع خازن توسط مولتی متر
تست انواع خازن :تست خازنهای کمتر از10 نانو فاراد بسادگی توسط مولتی متر انجام نمی شود و فقط با خازن سنج تست می شود در صورتیکه خازن سنج ندارید روشهای زیادی برای تست این نوع خازن می توان به کار برد .اینجانب برای تست این نوع خازنها پیشنهادی به همکاران می دهم اگر حوصله داشتید . آزمایش کنید .
برای تست این نوع خازن سه دور سیم روپوش دار معمولی را به دور هسته ترانس Hv که در دم دست داریم و تلویزیون در حال دریافت یک برنامه می باشد پیچیده و یک سر سیم را شاسی نموده خازن را به سر بعدی متصل و بایک مقاومت 10 کیلو اهمی شاسی کنید مطابق شکل :
در این حالت تلویزیون را روشن کنید طبیعی است که Hv در سیم پیچ القا ء حدود 25 الی 30 ولت پیک تو پیک خواهد داشت که با مولتیمترها نزدیک 6ولت Ac می شود . حال ولتاژ دو سر خازن را اندازه گیری نمائید اینجانب در آزمایشی که انجام دادم خازن 1n حدود 5vac خازن 820pf حدود 4vac ولت را نشان داد می توان مقاومت کمتری را نیز انتخاب و رنج وسیعی از خازنها را تست نمود از این روش می توان برای تست انواع خازنهای پلاستیکی استفاده نمود . و نتایج مختلفی برای انواع خازنها تجربه نمود . در این تست اگر دوسر خازن ولتاژی نداشته باشد به معنی شورت خازن واگر تقسیم ولتاژی مابین مقاومت و خازن صورت نگیرد به معنی قطع خازن می باشد . لازم به توضیح است که باید مقدار خازن و مقاومت را درست انتخاب نمود .
و حال تست خازنهای بالاتر از 10nf الی 1میکرو فاراد : برای تست این نوع خازن می توان مولتی متر را روی رنج Rx10 قرار داده و می دانیم لحظه وصل ترمینالهای مولتی متر اگر خازن خالی باشد توسط پیل 9v داخل مولتیمتر شارژ شده و در حان شارژ عقربه مولتیمتر اهم مدار را در لحظه عبور جریان نشان می دهد مقدار ماکزیمم حرکت عقربه را برای همیشه بخاطر بسپارید تقریباً متناسب با ظرفیت خازن عقربه منحرف می شود . اگر در این روش بعد از شارژ کامل خازن ، اگر خازن نشتی نداشته باشد خازن سالم است و اهم قرائت شده بی نهایت است . و در صورتیکه خازن نشت داشته باشد عقربه مقدار اهمی را نشان می دهد که گویای میزان نشتی خازن است .ونیز اگر خازن قطع باشد هیچگونه عکس العمل مشاهده نمی شود و عقربه هیچ انحرافی نخواهد داشت .
word: نوع فایل
سایز: 16.9 KB
تعداد صفحه:11