پویا فایل

پویا فایل

پویا فایل

پویا فایل

پاورپوینت نحوه محاسبه ریسک کنترل

پاورپوینت نحوه محاسبه ریسک کنترل

خطر حسابرسی:

خطر حسابرسی به معنای احتمال ارائه نظر نا مناسب درباره صورت های مالی است . موضوع ارزیابی خطر حسابرسی وتاثیر آن درافزایش قابلیت اعتماد اطلاعات منعکس شده در صورتهای مالی از چنان اهمیتی بر خوردار است که انجمنهای حرفه ای پیشگام چون انجمن حسابداران رسمی آمریکا ،انجمن حسابداران خبره انگلستان و ویلز، فدراسیون بین المللی حسابداران وموسسات حسابرسی بزرگ بطور جدی وپیگیر به موضوع خط حسابرسی پرداخته اند .



خرید فایل


ادامه مطلب ...

پاورپوینت کاربرد بتن خود تراکم در پروژه بزرگراه طبقاتی شهید صدر و بررسی روشهای کنترل کیفیت و دوام

پاورپوینت کاربرد بتن خود تراکم در پروژه بزرگراه طبقاتی شهید صدر و بررسی روشهای کنترل کیفیت و دوام


فهرست:
_ مقدمه
_ کاربرد بتن خودتراکم در پروژه پل طبقاتی شهید صدر، پیشنهادات و چالشها
_ مصالح مصرفی
_ 1-سنگدانه ها
_ شن بادامی
_ شن نخودی
_ ماسه

_ چالش های بهینه سازی کیفیت مصالح سنگی

_ 2-پودر سنگ (فیلر)
3 - افزودنی کاهنده آب ( فوق روان کننده)
4- سیمان
_ طرح اختلاط
_ تولید بتن و اجرا
_ کنترل کیفیت بتن خودتراکم تازه
1- کنترل حین ساخت بتن
2- کنترل خواص بتن تازه تولیدی
3- کنترل مقاومت فشاری بتن خود تراکم
4- کنترل دوام بتن خودتراکم
_ عمل آوری بتن با بخار
_ حفاظت از سطوح بتنی
_ مقاومت فشاری و انحراف معیار پروژه
_ نتیجه گیری

مقدمه:

بتن خودتراکم مخلوطی با روانی فوق العاده است که ضمن داشتن قابلیت بسیار مطلوب در شکل پذیری، بدون وجود مشکلاتی نظیر دیده جداشدگی دانه ها، در تولید محصولاتی همگن، با تراکم مناسب و سطوحی یکپارچه مورد استفاده قرار می گیرد. این مخلوط بتنی به خصوص در مواردی که حجم میلگردها مصرفی بسیار بالا باشد با برخوردار بودن از روانی بسیار زیاد در قالب حرکت کرده و ضمن نفوذ در تمامی بخشهای آن، موجب حصول تراکمی در حدود 522 درصد در قطعه بتنی می گردد.
به منظور ساخت پل بزرگراه طبقاتی شهید صدر، سازه ای بتنی و سگمنتال طراحی گردید. این سازه بتنی مبتنی بر تعداد زیادی از قطعات بتنی پیشساخته می باشد که می بایست در کمترین زمان و با بهترین کیفیت تولید شوند. از طرفی بدلیل استقرار این پل در یک فضای پرتردد شهری، زیبایی ظاهری قطعات نیز دارای اهمیت بود و همچنین طراحی سازه ای، مقاومت مشخصه بتن مصرفی را در سطح بالایی مطالبه مینمود. در نهایت دوام و کیفیت قطعات نیز با حساسیت مورد توجه طراحان و سازندگان قرار گرفت. در چنین شرایطی استفاده از دو گزینه اجتناب ناپذیر می نمود: بتن خودتراکم و بتن توانمند.
بر اساس نظر مشاورین پروژه استفاده از بتن خودتراکم در سطح وسیع به دلیل مشکلات متعدد از قبیل : کمبود نیروی متخصص، تحمیل فشار به قالبهای قطعات تولیدی و امکان خروج بتن از آنها، تامین افزودنی مناسب برای کسب روانی لازم، چگونگی انتخاب واستفاده از فیلر و یا ماده لزجت دهنده، تأمین لزجت مناسب باکاهش عیار سیمان، مشکل تولید این نوع بتن در بچینگ و حساسیت بالای دانه بندی مصالح سنگی و ... مسائلی بود که ذهن مشاورین را به جای استفاده از این بتن به بتن توانمند ترغیب می نمود.



خرید فایل


ادامه مطلب ...

کنترل اتوماتیک فشارخون با استفاده از کنترلر PID و تنظیم پارامترهای آن توسط الگوریتم ژنتیک

کنترل اتوماتیک فشارخون با استفاده از کنترلر PID و تنظیم پارامترهای آن توسط الگوریتم ژنتیک

توجه :

شما می توانید با خرید این محصول فایل " قلق های پایان نامه نویسی (از عنوان تا دفاع)" را به عنوان هدیه دریافت نمایید.

چکیده

کنترل اتوماتیک فشارخون با استفاده از کنترلر PID و تنظیم پارامترهای آن توسط الگوریتم ژنتیک

فشارخون بالا زمانی ایجاد می شود که فشارخون در دیواره رگ ها بیش از حد معمول بالا رود که این وضعیت بسیار خطرناک است چون گاهی اوقات تاْثیرات مخرب آن در مرور زمان افزایش می یابد ، پس ثابت نگه داشتن سطح فشارخون در حالت نرمال حائز اهمیت است . کنترل PID به دلیل سادگی و مقاوم بودن آن تا کنون در کنترل بسیاری از پروسه های صنعتی مورد استفاده قرار گرفته است. معمولا در کاربردهای صنعتی، پارامترهای کنترلر PID به صورت دستی و با سعی و خطا تنظیم می شود. تنظیم پارامترهای کنترلر به صورت دستی، کارایی آن را به ویژه در شرایطی که زمان اهمیت دارد و نیز در مواردی که پارامترهای پلانت از قبل مشخص نباشد، کاهش می دهد. لذا در سالهای اخیر کار تحقیقاتی زیادی در زمینه تنظیم اتوماتیک پارامترهای کنترلر PID انجام گرفته و از بسیاری از تکنیک های هوشمند مانند الگوریتم های ژنتیک، بهینه سازی انبوه ذرات و ... برای تنظیم پارامترهای این کنترلر استفاده شده است.

در این پایان نامه، از الگوریتم ژنتیک جهت تنظیم پارامترهای کنترلر PID استفاده شده است. تنظیم اتوماتیک پارامترهای کنترلر توسط الگوریتم ژنتیک، دقت و سرعت کنترلر را به طرز قابل توجهی بهبود بخشیده و انعطاف کنترلر را برای برخورد با سیستمهای مختلف افزایش می دهد. کنترلر PID-GA پیشنهادی ، جهت تنظیم نرخ تزریق دارو به منظور کنترل فشار خون بیمار مورد استفاده قرار گرفته است. نتایج شبیه سازی ها نشان می دهد که این کنترلر با دقت و سرعت مناسب، سطح فشار خون بیمار را به حالت نرمال برمی گرداند و تغییر پارامترهای بیمار نیز در کارایی کنترلر تاثیری نخواهد داشت.

فهرست مطالب

عنوان صفحه

فصل اول مقدمه 1

فصل دوم بیماری فشارخون و روش های درمان پزشکی 4

2-1 مقدمه 4

2-2 تعریف فشار خون 6

2-3 انواع فشار خون 7

2-3-1 علائم 7

2-3-2 تشخیص 8

2-3-3 درمان 8

2-4 افزایش فشار خون 11

2-4-1 شکل فشار خون بدخیم یا تشدید شده 12

2-5 عوارض ناشی از فشار خون بالا 12

2-5-1 نارسایی قلبی 12

2-5-2 نارسایی کلیه 13

2-5-3 ضعف بینایی 13

2-5-4 سکته مغزی 13

2-5-5 حمله گذرای ایسکمی 14

2-5-6 فراموشی 14

2-5-7 بیماری عروق قلبی 14

2-5-8 سکته (حمله) قلبی 15

2-5-9 بیماری عروق محیطی 15

2-6 شیوه های درمان فشار خون بالا 15

2-7 برخی داروهای پایین آورنده فشار خون 16

فصل سوم استفاده از الگوریتم ژنتیک در تنظیم پارامترهای کنترلر PID 17

3-1 مقدمه 17

3-2 کنترلر PID 18

3-2-1 مقدمه 18

3-2-2 اجزای کنترلر 19

3-2-3 PID پیوسته 20

3-2-4 بهینه سازی کنترلر 20

3-2-5 مشخصات کنترلر های تناسبی-مشتق گیر-انتگرالگیر 21

3-2-6 مثالی از تنظیم پارامترهای کنترلر PID 22

3-2-6-1 کنترل تناسبی 23

3-2-6-2 کنترل تناسبی – مشتق گیر 24

3-2-6-3 کنترل تناسبی – انتگرالی 25

3-2-6-4 اعمال کنترلر PID 26

3-3 الگوریتم ژنتیک 27

3-3-1 مقدمه 27

3-3-2 تاریخچه الگوریتم ژنتیک 28

3-3-3 زمینه های بیولوژیکی 29

3-3-4 فضای جستجو 30

3-3-5 مفاهیم اولیه در الگوریتم ژنتیک 31

3-3-5-1 اصول پایه 31

3-3-5-2 شمای کلی الگوریتم ژنتیک 31

3-3-5-3 کد کردن 32

3-3-5-4 کروموزوم 32

3-3-5-5 جمعیت 33

3-3-5-6 مقدار برازندگی 33

3-3-5-7 عملگر برش 34

3-3-5-8 عملگر جهش 36

3-3-6 مراحل اجرای الگوریتم ژنتیک 38

3-3-7 همگرایی الگوریتم ژنتیک 43

3-3-8 شاخص های عملکرد 44

3-3-8-1 معیارITAE 44

3-3-8-2 معیار IAE 44

3-3-8-3 معیار ISE 44

3-3-8-4 معیار MSE 45

3-4 تنظیم پارامترهای کنترلر PID با استفاده از الگوریتم ژنتیک 45

3-4-1 تاریخچه 46

3-4-2 نحوه تنظیم پارامترهای کنترلر PID با استفاده از الگوریتم ژنتیک 46

3-5 مدل سازی ریاضی سیستم تنظیم فشار خون 47

3-5-1 مقدمه 47

3-5-2 مدل های دینامیکی توسعه داده شده 48

3-5-2-1 مدل اول 48

3-5-2-2 مدل دوم 49

3-5-2-3 مدل سوم 50

3-5-2-4 مدل چهارم 52

3-6 پیاده سازی سیستم تحویل دارو برای تنضیم فشارخون 53

فصل چهارم الگوریتمهای هم تکاملی هم کارانه 55

4-1 مقدمه 55

4-1-1 مفهوم هم تکاملی در طبیعت 55

4-1-2 الگوریتم های هم تکاملی ( CEAs) 56

4-2 تاریخچه 57

4-3 چرا از الگوریتمهای هم تکاملی استفاده می کنیم؟ 58

4-3-1 فضای جستجوی بزرگ یا نامحدود 59

4-3-2 عدم وجود یا مشکل بودن بیان ریاضی معیار مطلق برای ارزیابی افراد 60

4-3-3 ساختارهای پیچیده و یا خاص 61

4-4 معایب هم تکاملی 62

4-5 طبقه بندی الگوریتم های هم تکاملی 64

4-5-1 ارزیابی 64

4-5-1-1 کیفیت و چگونگی Payoff 66

4-5-1-2 روش های اختصاص برازندگی 66

4-5-1-3 روش های تعامل بین افراد 67

4-5-1-4 تنظیم زمان به هنگام سازی 68

4-5-2 نحوه نمایش 69

4-5-2-1 تجزیه مسأله به اجزای کوچکتر 69

4-5-2-2 توپولوژی فضایی 69

4-5-2-3 ساختار جمعیت 69

4-6 چهارچوب کلی الگوریتم هم تکاملی همکارانه 70

4-7 مقاوم بودن در الگوریتم های هم تکاملی هم کارانه 70

4-8 تئوری بازیهاوتحلیل الگوریتم هم تکاملی براساس مفاهیم تئوری بازی تکاملی 72

4-9 زمینه های کاربرد الگوریتم های هم تکاملی 75

فصل پنجم شبیه سازی ها و نتایج 78

5-1 مقدمه 78

5-2 کنترل بهینه فشارخون حین عمل جراحی توسط الگوریتم ژنتیک 78

5-2-1 شبیه سازی سیستم کنترل اتوماتیک فشارخون با کنترلر PID والگوریتم ژنتیک 79

5-2-1-1 انتخاب مدل ریاضی 79

5-2-1-2 انتخاب کنترلر 80

5-2-1-3 انتخاب تابع برازندگی برای الگوریتم ژنتیک 81

5-2-1-4 اعمال کنترلر و عمل کردن الگوریتم ژنتیک 82

5-2-2 نتایج شبیه سازی 84

5-2-3 پاسخ های حاصل از اجرای برنامه شبیه سازی شده 85

فصل ششم نتیجه گیری و پیشنهادات 88

6-1 نتیجه گیری 88

6-2 پیشنهادات 89

مراجع 90

فهرست شکل ها

عنوان صفحه

شکل 3-1 شمای کلی کنترلر PID 19

شکل 3-2 مثالی از تنظیم پارامترهای کنترلر PID 22

شکل 3-3 پاسخ پله سیستم حلقه باز 23

شکل 3-4 پاسخ پله واحد سیستم حلقه بسته با کنترلر تناسبی 24

شکل 3-5 پاسخ پله واحد سیستم حلقه بسته با کنترلر PD 24

شکل 3-6 پاسخ پله واحد سیستم حلقه بسته با کنترلر PI 25

شکل 3-7 پاسخ پله واحد سیستم حلقه بسته با کنترلر PID 26

شکل 3-8 : تبدیل فنوتیپ ها به ژنوتیپ ها وبالعکس 29

شکل 3-9 نمونه ای از فضای جواب 30

شکل 3-10 نمایش یک کروموزوم n بیتی در پایه عددی m 33

شکل 3-11 عمل برش تک نقطه ای 35

شکل 3-12 : عمل برش چند نقطه ای 35

شکل 3-13 عمل برش یکنواخت 36

شکل 3-14 عمل جهش 37

شکل 3-15 مراحل اجرای الگوریتم ژنتیک 39

شکل 3-16 مدل چرخ رولت 40

شکل 3-17 بلوک دیاگرام سیستم کنترل با کنترلر 53

شکل 4-1 سلسله مراتب طبقه بندی ویژگی های یک الگوریتم هم تکاملی 65

شکل4-2 الگوریتم هم تکاملی هم کارانه ترتیبی خلاصه شده 71

شکل 4-3 ماتریس امتیازدهی 74

شکل 5-1 شمای کلی سیستم 79

شکل 5-2 فلوچارت سیستم کنترل فشارخون 83

شکل 5-3 شبیه سازی کنترلر PID 84

شکل 5-4 شبیه سازی سیستم کنترل فشارخون 84

شکل 5-5 مقدار برازندگی ها در هر نسل 86

شکل 5-6 ضرایب کنترلرPID 86

شکل 5-7 خروجی سیستم در حالتی که فشار از حالت مطلوب بیشتر است 87

شکل 5-8 خروجی سیستم در حالتی که فشار از حد مطلوب کمتر است 87

فهرست جداول

جدول 3-1 اثرات کنترلرهای ، ، 21

جدول 3-2 نمونه ای از عمل جهش 37

جدول 3-3 انتخاب کروموزوم ها با استفاده از مدل چرخ رولت 41

جدول 3-4 محدوده پارامترهای مدل دینامیکی سیستم فشارخون 51

جدول 3-5 مقادیر تعیین شده برای پارامترهای مدل 52

جدول 3-6 مقادیر پارامترهای فرمول رابطه بین تغییرات فشارخون و سرعت تزریق دارو 53

جدول 5-1 انتخاب عدد مناسب برای پارامترهای مدل فشارخون 80



خرید فایل


ادامه مطلب ...

کنترل دینامیکی ربات دو پا با استفاده از سیستم کنترل فازی

کنترل دینامیکی ربات دو پا با استفاده از سیستم کنترل فازی

در این پایان نامه یک مدل ریاضی دو بعدی ربات دو پای پنج اتصال مورد مطالعه قرار گرفته است. از نرم افزار متلب برای طراحی سیستم کنترل کننده‌ی فازی به منظور کنترل زوایای نیم تنه‌ی بالا، ساق‌ها و ران‌های ربات دو پایی که در دانشگاه هلسینکی طراحی و مدل سازی گردیده و همچنین به وسیله ی سیستم کنترل کننده ی PD در آنجا کنترل شده است، استفاده شده است.استفاده از سیستم کنترل کننده ی PD از پیچیدگی زیادی برخوردار است چرا که برای کنترل چهار زاویه به چهار کنترل کننده در هر یک از چهار فاز حرکتی احتیاج است. بنابر این در سیستم کنترل PD در کل به شانزده کنترل کننده احتیاج خواهد بود. با استفاده از سیگنال خطا و تغییر در خطا و همچنین سیگنال های کنترل ناشی از سیستم PD متناظر آنها قوانین فازی بدست می آیند و تعداد کنترل کننده ها از شانزده کنترل کننده ی PD به چهار کنترل کننده ی فازی کاهش می یابند. سیستم کنترل کننده ی فازی به کار برده شده به دلیل احتیاج نداشتن به اطلاعات فاز حرکتی ربات نیز ساده‌تر از PD خواهد بود. ارتباط بین قوانین فازی و عملکرد کنترل کننده ی فازی در اینجا مورد بررسی قرار می‌گیرد و همچنین تاثیر اضافه کردن گین در خروجی بررسی می گردد.

واژگان کلیدی: ربات دوپا، کنترل دینامیکی، قوانین فازی، کنترل کننده PD

فهرست مطالب

چکیده 1

فصل اول: کلیات تحقیق

1-1- مقدمه 3

1-2- مدل ساده ربات دو پای پنج اتصال. 4

1-3- کنترل کننده ی منطق فازی. 5

1-4- بیان مسأله 6

1-5- هدف از این مطالعه 6

1-6- گستره کار 6

1-7- نمای کلی از پایان نامه 7

فصل دوم: مروری بر ادبیات و پیشینه تحقیق

2-1- گسترش در سال 1980. 9

2-2- پیشرفت در سال 1990. 9

2-3- تحرک ربات دو پا بر روی سطوح کمتر ساخت یافته 10

2-4- تعادل دینامیکی ربات دو پا با استفاده از عوامل یادگیری تقویت فازی. 10

2-5- ابزار شبیه سازی از مدل راه رفتن ربات دو پا 10

2-6- کنترل پویا و پیوندی ربات دو پا در ناحیه پشتیبانی. 11

2-7- درک تجربی راه رفتن دینامیکی ربات دو پای شبیه انسانKHR-2 با استفاده از بازخورد نقطه ای صفر و مقیاس اینرسی. 11

2-8- بهینه سازی شیوه راه رفتن ربات دو پا توسط ترکیب دینامیکی مطلق. 12

فصل سوم: روش شناسی تحقیق

3-1- مقدمه 14

3-2- دینامیک ربات دوپا 16

3-3- نیروهای ناشی از برخورد با زمین. 20

3-4- محدودیت زاویه ی زانو. 21

3-5- مدل بلوک های مطلب با استفاده از کنترل فازی. 22

3-5-1 بلوک مرجع. 22

3-5-2 بلوک سیگنال های خطا 26

3-5-3 بلوک کنترل کننده ی فازی. 27

3-5-4 تبدیل به بلوک گشتاور 28

3-5-5 بلوک مدل دو پا 28

3-5-5-1 بلوک مدل دینامیکی. 31

3-5-5-2 بلوک تماس با زمین. 33

3-5-5-3 بلوک ایستاگر زانو. 33

3-6- خلاصه ی فصل. 34

فصل چهارم: تجزیه و تحلیل یافته های تحقیق

4-1- مقدمه 36

4-2- ویرایشگر توابع عضویت.. 42

4-3- شبیه سازی از woutgain.mdl 50

4-4- گسترش قوانین فازی. 54

4-5- شبیه سازی woutgain.mdl با استفاده از فایل FIS جدید. 64

4-6- اضافه کردن بهره و شبیه سازی. 67

4-7- خلاصه فصل. 72

فصل پنجم: نتیجه گیری و پیشنهادات

5-1- نتیجه گیری. 74

5-2- توصیه ها برای کارهای آینده 75

منابع و مآخذ. 76

فهرست منابع انگلیسی. 76

پیوست.. 78

چکیده انگلیسی. 81

فهرست جداول

جدول 3-1: مشخصات پارامتر های بلوک مدل ربات دو پا 29

جدول 4-1: قوانین فازی برای کنترل کننده هایΔβ و γL و γR. 37

جدول 4-2: قوانین فازی برای کنترل کننده α. 41

جدول 4-3: قوانین فازی برای کنترل کننده هایΔβ و γL وR γ. 54

جدول 4-4: قوانین فازی برای کنترل کننده α. 54

فهرست شکل ها

شکل 1-1: مدل دینامیکی ربات دوپا با پنج درجه آزادی.. 4

شکل 1-2: ساختار کنترل کننده فازی.. 5

شکل 3-1: مراحل پروژه 15

شکل 3-2: FIS Editor 16

شکل 3-3: (الف)مدل ربات دوپا و مقادیر ثابت. (ب) نیرو های خارجی.. 17

شکل 3-4: نوک پای ربات دوپا با زمین در نقطه ی(x0΄,0) برخورد می کند (خاکستری). 20

شکل 3-5: مدل ربات دوپا پنج اتصال با استفاده از کنترلر فازی MATLAB.. 22

شکل 3-6- الف: سیگنال مرجع برای α. 23

شکل 3-6- ب: سیگنال مرجع برای Δβ. 23

شکل 3-6- ج: سیگنال مرجع برای γL. 24

شکل 3-7: مدل داخلی سیگنال های خطا 25

شکل 3-8: مدل داخلی کنترل کننده های فازی.. 26

شکل 3-9: مدل داخلی تبدیل به گشتاور. 27

شکل 3-10: بلوک مدل دو پا و پارامتر های کادر محاوره ای.. 28

شکل 3-11: مدل داخلی بلوک ربات دو پا 30

شکل 3-12: مدل داخلی بلوک مدل دینامیکی ربات دوپا 31

شکل 3-13: بلوک مدل داخلی ماتریس های A و b. 31

شکل 3-14: مدل داخلی بلوک تماس با زمین.. 32

شکل 3-15: مدل داخلی بلوک ایستاگر زانو. 33

شکل 4-1: تغییر در خطا و سیگنال کنترل Δβ. 36

شکل 4-2: خطا، تغییرات در خطا و سیگنال های کنترل γL. 38

شکل 4-3: خطا، تغییرات در خظا وسیگنال کنترل γR. 39

شکل 4-4: تغییرات در خظا وسیگنال کنترل α. 40

شکل 4-5: پنجره ی اصلی fis flie 123fuz3. 42

شکل 4-6: تابع عضویت ویرایشگر error1. 42

شکل 4-7: تابع عضویت ویرایشگر Derror1. 43

شکل 4-8: تابع عضویت ویرایشگر control1. 43

شکل 4-9: پنجره ی ویرایشگر قوانین برای 123fuz3. 44

شکل 4-10: پنجره ی نشان دهنده ی قوانین برای 123fuzz3. 44

شکل 4-11: پنجره ی نشان دهنده ی سطح برای 123fuzz3. 45

شکل 4-12: پنجره ی اصلی fis flie 123fuz3. 45

شکل 4-13: ویرایشگر عضویت error4. 46

شکل 4-14: ویرایشگر تابع عضویت Derror4. 46

شکل 4-15: ویرایشگر تابع عضویت control4. 47

شکل 4-16: پنجره ی ویرایش قوانین برای 4fuzz3. 47

شکل 4-17: پنجره ی نشان دهنده ی قوانین برای 4fuzz3. 48

شکل 4-18: پنجره ی نشان دهنده ی سطح برای 4fuzz3. 48

شکل 4-19: مدل متلب برای woutgain.mdl 49

شکل 4-20: رنگ سبز برای خروجی PD، رنگ بنفش برای خروجی فازی و رنگ زرد سیگنال مرجع α 50

شکل 4-21: رنگ سبز برای خروجی PD، رنگ بنفش برای خروجی فازی و رنگ زرد سیگنال مرجعΔβ 51

شکل 4-22: رنگ سبز برای خروجی PD، رنگ بنفش برای خروجی فازی و رنگ زرد سیگنال مرجع γL 52

شکل 4-23: رنگ سبز برای خروجی PD، رنگ بنفش برای خروجی فازی و رنگ زرد سیگنال مرجع γr 53

شکل 4-24: پنجره ی اصلی FIS file 123fuzz5. 55

شکل 4-25: ویرایشگر تابع عضویت Error1. 56

شکل 4-26: ویرایشگر تابع عضویت Derror1. 56

شکل 4-27: ویرایشگر تابع عضویت control1. 57

شکل 4-28: پنجره ی ویرایشگر قوانین برای 123fuzz5. 57

شکل 4-29: پنجره ی نمایشگر قوانین برای 123fuzz5. 58

شکل 4-30: پنجره ی نمایشگر سطح برای 123fuzz5. 58

شکل 4-31: پنجره ی اصلی FIS file 4fuzz5. 59

شکل 4-32: ویرایشگر تابع عضویت Error4. 59

شکل 4-33: ویرایشگر تابع عضویت Derror4. 60

شکل 4-34: ویرایشگر تابع عضویت control4. 60

شکل 4-35: پنجره ی ویرایشگر قوانین برای 4fuzz5. 61

شکل 4-36: پنجره ی ویرایشگر قوانین برای 4fuzz5. 61

شکل 4-37: پنجره ی نمایشگر سطح برای 4fuzz5. 62

شکل 4-38: رنگ سبز برای خروجی PD، رنگ بنفش برای خروجی فازی و رنگ زرد سیگنال مرجع α 63

شکل 4-39: رنگ سبز برای خروجی PD، رنگ بنفش برای خروجی فازی و رنگ زرد سیگنال مرجع Δβ 64

شکل 4-40: رنگ سبز برای خروجی PD، رنگ بنفش برای خروجی فازی و رنگ زرد سیگنال مرجع γL 65

شکل 4-41: رنگ سبز برای خروجی PD، رنگ بنفش برای خروجی فازی و رنگ زرد سیگنال مرجع γR 65

شکل 4-42: مدل داخلی کنترل کننده ی فازی بعد از اضافه کردن بهره ها 66

شکل 4-43: رنگ سبز برای خروجی PD، رنگ بنفش برای خروجی فازی و رنگ زرد سیگنال مرجع α 67

شکل 4-44: رنگ سبز برای خروجی PD، رنگ بنفش برای خروجی فازی و رنگ زرد سیگنال مرجع 68

شکل 4-45: رنگ سبز برای خروجی PD، رنگ بنفش برای خروجی فازی و رنگ زرد سیگنال مرجع γL 69

شکل 4-46: رنگ سبز برای خروجی PD، رنگ بنفش برای خروجی فازی و رنگ زرد سیگنال مرجع γR 70

شکل 4-47: رنگ سبز برای خروجی PD، رنگ بنفش برای خروجی فازی و رنگ زرد سیگنال مرجع به ترتیب برای α ،Δβ ، γLو γR. 71



خرید فایل


ادامه مطلب ...

سیستم های کنترل بینا

سیستم های کنترل بینا

توجه :

شما می توانید با خرید این محصول فایل " قلق های پایان نامه نویسی (از عنوان تا دفاع)" را به عنوان هدیه دریافت نمایید.

فهرست مطالب

فصل اول:

آشنایی با ماشین بینایی و تصویر برداری دیجیتالی

1 کلیات

1ـ1 بینایی و اتوماسیون کارخانه

2ـ1 بینایی انسان در مقابل بینایی ماشین

3ـ1 پارامترهای مقایسه ای

1ـ3ـ1 تطبیق پذیری

2ـ3ـ1 تصمیم گیری

3ـ3ـ1 کیفیت اندازه گیری

4ـ3ـ1 سرعت واکنش

5ـ3ـ1 طیف موج واکنش

6ـ3ـ1 توانایی درک صحنههای دو بعدی و سه بعدی

7ـ3ـ1 خلاصة‌مقایسه

4ـ1 توجیه اقتصادی

فصل دوم

سیستم بینایی و کنترل

2 کلیات سیستم

1ـ2 تصویرگیری

1ـ1ـ2 نورپردازی

2ـ1ـ2 تشکیل تصویر و متمرکز نمودن آن

3ـ1ـ2 شناسایی تصویر

2ـ2 پردازش

3ـ2 خروجی یا نمایش داده های تصویری

فصل سوم

پردازاش تصویر

3 مقدمه

1ـ3 پیکسل

2ـ3 پنجره

3ـ3 مکان پیکسل

4ـ3 مکان پیکسل

5ـ3 خطای کوانتایز کردن

1ـ5ـ3 خطای اندازه گیری

6ـ3 هیستوگرام

1ـ6ـ3 ایجاد هیستوگرام

2ـ6ـ3 مشخصات

7ـ3 سیستمهای رنگی CMYB و RGB



خرید فایل


ادامه مطلب ...

کنترل قیمت از طریق هدف گذاری تورمی

کنترل قیمت از طریق هدف گذاری تورمی


مقدمه

بحثهای زیادی بین اندیشمندان اقتصادی درباره تورم به معنی افزایش سریع و مداوم قیمتها از لحاظ علل و منشأ و اهمیت آن از لحاظ اقتصادی، متوقف نمودن یا کنترل کردن آن و آثار این پدیده بر روی سایر متغیرهای اقتصادی وجود دارد که از اشاره به آن در این مقاله خودداری می‌کنیم.

بررسیهای زیادی در ایران در مورد تورم و علل و آثار آن صورت گرفته است. اکثر این بررسیها مؤید این واقعیت است که تورم در ایران یک پدیده پولی می‌باشد و سایر عوامل از جمله عوامل مربوط به سمت عرضه یا فشار هزینه آثار کمتری بر افزایش سطح عمومی ‌قیمتها داشته است. به طور صریح‌تر می‌توان گفت منشأهای سمت عرضه در اقتصاد ایران گرچه آثار کوتاه مدتی در تغییر قیمتها داشته است ولی در بلند مدت علت تورم در ایران بسط تقاضا بوده است




خرید فایل


ادامه مطلب ...

کاربرد صفحات مستغرق در کنترل روند رسوبگذاری در بنادر صیادی با استفاده از مدل فیزیکی

کاربرد صفحات مستغرق در کنترل روند رسوبگذاری در بنادر صیادی با استفاده از مدل فیزیکی

امواج دریا در جلوی دهانه بندر میشکنند و باعث به تعلیق در آمدن رسوبات بستر دریا میگردند.این رسوبات در اثر امواج ضعیف دریا و یا حرکت کشتی ها به داخل بندر راه یافته و نهایتاً در آنجا ته نشین میگردند و دراثر ادامه این فرایند از عمق مفید ناحیه داخل بندر کاسته شده و برای سرویس دهی پیوسته بندر نیاز به عملیات لایروبی کف میباشد که این عملیات به دلیل حجم بسیار زیاد رسوب مستلزم صرف وقت و هزینه بسیار گزافی میباشد.

از آنجاکه صفحات مستغرق درکانالهای آبگیر مورد استفاده قرارگرفته وبه طرزقابل ملاحظه ای در انتقال عرضی رسوب وکنترل ورود رسوب به داخل آبگیر موثر بوده است، لذادر این تحقیق با استفاده از مدل فیزیکی و شبکه بندی محوطه بندر و اطراف آن و شبیه سازی امواج دریا توسط دستگاه موجساز در محیط آزمایشگاه ابتدا میزان رسوب ورودی در نقاط مختلف شبکه بندی بندردر حالت بدون استفاده از صفحات مستغرق، اندازه گیری شده و سپس با کار گذاشتن صفحات مستغرق ،با آرایش مختلف، در جلوی دهانه ورودی بندرمجدداً میزان رسوب در نقاط شبکه بندی اندازه گیری شده است و نتایج با حالت بدون کار گذاشتن صفحات مستغرق مقایسه و مورد تجزیه و تحلیل قرار گرفته است.

نتایج حاصل از این آزمایشات حاکی ازآن است که نصب صفحات مستغرق با آرایش مختلف در دهانه ورودی بنادر موجب انتقال عرضی رسوب و در نتیجه عدم ورود رسوب به داخل بندر می گردد.

کلید واژه:بندر،رسوب،صفحات مستغرق

عنوان

صفحه

1

1

فصل اول: مقدمه وهدف از این تحقیق

1. 1- مقدمه

1

2

1 . 1. 1- مهندسی دریا

1. 1. 2- تاریخچه مطالعات

3

4

1 . 2- هدف از این تحقیق

فصل دوم: بنادر صیادی

5

6

2 .1- تعریف بنادر صیادی

2. 2- شرایط حاکم بر طراحی بندر

6 6

2. 2. 1- شرایط اقتصادی

2. 2. 2- شرایط فیزیکی

7

7

2. 2. 3- شرایط کشتیرانی

2 . 2. 3. 1- اثر باد

7 7

2. 2. 3. 2- اثر موج

2. 2. 3. 3- اثر جریانها

7

8

2. 3 - شرایط مربوط به حفظ عمق در قسمتهای مختلف بندر 2. 4- انواع موج شکن ها

8

9

2. 4. 1- موج شکن منقطع یا پایدار

2. 4. 2- موج شکن شناور

9

9

2. 4. 3- موج شکن هوایی

2 . 4. 4- موج شکن یکسره

10

فصل سوم: صفحات مستغرق

11

11

3. 1- مقدمه

3. 2- تئوری صفحات مستغرق

13

17

3. 3- مطالعات انجام شده

فصل چهارم: مکانیک امواج و هیدرودینامیک لنگرگاه

18 24

4. 1- مقدمه

4. 2- امواج منظم

24

26

4. 2. 1- تعریف پارامتر های موج

4. 2. 2- تئوری موج خطی

26

4. 2. 2. 1- فرضیات

29

33

4. 2. 2. 2- سرعت ، طول و پریود موج

4. 2. 2. 3- پروفیل امواج سینوسی

33

34

4. 2. 2. 4- برخی توابع مفید و کاربردی

فصل پنجم: شرح مدل فیزیکی

35

36

5. 1- حوضچه مدل

5. 2- بندر

37

37

5. 3- دستگاه تولید موج یکنواخت

5. 3. 1- الکترو گیر بکس

38

39

5 . 3. 2-بازوی پیستونی

5. 3. 3- پاروی موج ساز

40

40

5. 4- دستگاه رسوب سنج

5. 4. 1- سنسور

42

46

5. 4. 2- مانیتور

5. 5- رسوب مورد استفاده

44

44

5. 5. 1- براده چوب

5. 5. 2- تراشه آلومینیوم

44

5. 5. 3- ماسه

45

46

فصل ششم: شرح آزمایش های انجام شده ونتیجه گیری

6. 1- شرح آزمایش ها

48

51

6. 1. 1- آزمایش شماره یک

6. 1. 2- آزمایش شماره دو

54

58

6. 1. 3- آزمایش شماره سه

6. 1. 4- آزمایش شماره چهار

62

66

6. 1. 5- آزمایش شماره پنج

6. 1. 6- آزمایش شماره شش

70

75

6. 1. 7- آزمایش شماره هفت

6. 2- مقایسه و بحث

87

نتیجه گیری

88

پیوست الف : جدول ها

فهرست شکل ها

شکل 3-1:گردابه ایجاد شده در پایین دست یک صفحه 12

شکل 3-2:گشتاور ایجاد شده توسط نیروی گریز از مرکز 14

شکل 4-1:تعریف پارامتر های مبنا برای موج سینوسی 25

شکل 5-1:نمایی از حوضچه مدل 35

شکل 5-2: مراحل احداث بندر در داخل حوضچه مدل 36

شکل 5-3: پلان کلی آزمایشگاه 37

شکل 5-4: نمایی از الکتروگیربکس 38

شکل 5-5: صفحه دوار تولید موج 39

شکل 5-6: روشهای مختلف تولید موج 39

شکل 5-7: دستگاه سنسور رسوب سنج 41

شکل 5-8: نمایی از سنسور دستگاه رسوب سنج 41

شکل 5-9: دو نما از مانیتور دستگاه رسوب سنج 42

شکل 6-1:توپوگرافی و نمایش سه بعدی بستر مربوط به آزمایش شماره یک 49

شکل 6-2: توپوگرافی و نمایش سه بعدی بستر مربوط به آزمایش شماره دو 53

شکل 6-3: توپوگرافی و نمایش سه بعدی بستر مربوط به آزمایش شماره سه 56

شکل 6-4: نمایش نقاط شبکه بندی و منحنی های هم تراز آزمایش شماره سه 57

شکل 6-5: توپوگرافی و نمایش سه بعدی بستر مربوط به آزمایش شماره چهار 60

شکل 6-6: نمایش نقاط شبکه بندی و منحنی های هم تراز آزمایش شماره چهار 61

شکل 6-7: نمایی از محل قرارگیری صفحات مستغرق در آزمایش شماره پنج 64

شکل 6-8: نمایی از چگونگی جابجایی رسوب بستر پس از آزمایش شماره پنج 64

شکل 6-9: توپوگرافی و نمایش سه بعدی بستر مربوط به آزمایش شماره شش 68

شکل 6-10: نمایش نقاط شبکه بندی و منحنی های هم تراز آزمایش شماره شش 69

شکل 6-11: توپوگرافی و نمایش سه بعدی بستر مربوط به آزمایش شماره هفت 72

شکل6-12: نمایش نقاط شبکه بندی و منحنی های هم تراز آزمایش شماره هفت 73

شکل 6-13: نمایی از داخل محوطه بندر 74

شکل 6-14: نمایی از نحوه انتقال رسوب در جهت عرضی 74

شکل 6-15: توپوگرافی بستر تحت آرایش یکردیفه صفحات با زاویه 90 درجه 80

شکل 6-16: نمایی از آرایش دو ردیفه صفحات مستغرق در مقابل بندر 81

شکل 6-17: توپوگرافی بستر تحت آرایش دو ردیفه صفحات با زاویه 105 درجه 83

فهرست جدول ها

جدول 3-1: نتایج طرح بهینه صفحات مستغرق 16

جدول 4-1: طبقه بندی امواج به لحاظ عمق 31

جدول 5-1: مشخصات ذرات مورد استفاده در آزمایش های رسوب 43

جدول 6-1: متوسط رقوم اندازه گیری شده در آزمایش شماره یک(mm) 50

جدول 6-2: متوسط رقوم اندازه گیری شده در آزمایش شماره دو(mm)

52 جدول 6-3: متوسط رقوم اندازه گیری شده در آزمایش شماره سه(mm) 55

جدول 6-4: متوسط رقوم اندازه گیری شده در آزمایش شماره چهار(mm) 59

جدول 6-5: متوسط رقوم اندازه گیری شده در آزمایش شماره پنج(mm) 63

جدول 6-6: متوسط رقوم اندازه گیری شده در آزمایش شماره شش(mm) 67

جدول 6-7: متوسط رقوم اندازه گیری شده در آزمایش شماره هفت(mm) 71

جدول 6-8: رقوم ارتفاعی بستر در آزمایش بدون صفحات 75

جدول 6-9: رقوم ارتفاعی بستر در یک مقطع طولی در آزمایش یکردیفه 75 درجه 76

جدول 6-10: رقوم ارتفاعی بستر در یک مقطع طولی در آزمایش دوردیفه 75 درجه 76

جدول 6-11: رقوم ارتفاعی بستر در یک مقطع طولی در آزمایش صفحات دوردیفه 78

جدول 6-12: رقوم ارتفاعی بستر در یک مقطع طولی در آزمایش یکردیفه 90 درجه 79

جدول 6-13: رقوم ارتفاعی بستر در یک مقطع طولی در آزمایش دوردیفه 90 درجه 79

جدول 6-14: رقوم ارتفاعی بستر در یک مقطع طولی در آزمایش بدون صفحه 82

جدول 6-15: رقوم ارتفاعی بستر در یک مقطع طولی در آزمایش یکردیفه 105 درجه 82

جدول 6-16: رقوم ارتفاعی بستر در یک مقطع طولی در آزمایش دوردیفه 105 درجه 83



خرید فایل


ادامه مطلب ...

کنترل داخلی در سیستم های کامپیوتری

کنترل داخلی در سیستم های کامپیوتری

مبحث کنترل های داخلی در فصل پنجم، تفکیک وظایف بین کارکنان نجری سیستم دستی حسابداری را مورد بررسی قرار داده است. در چنین سیستمی، هیچ کارمندی مسئولیت کامل یک معامله را بر عهده ندارد، و کار هر فرد توسط فرد دیگری که یک جنبه دیگر از همان معاملا را انجام می دهد، کنترل می شود. تفکیک وظایف، از صحت مدارک و گزارشها اطمینان می دهد و منافع شرکت را در برابر تقلب و بی دقتی حفظ می کند.

با کامپیوتری شدن سیستم شرکت، اجرای کارهایی که قبلاً بین افراد بسیاری تقسیم می شد به کامپیوتر واگذار می شود، از آنجا که کامپیوتر می تواند بسیاری از جنبه های مرتبط به هم معاملات را به سادگی انجام دهد، تلفیق عملیات و ادغام وظایف را نیز باید از آن انتظار داشت. برای مثال، کامپیوتر هنگام تهیه لیست حقوق و دستمزد می تواند با یک بار استفاده از پرونده اصلی، انواع وظایف مرتبط را انجام دهد. از جمله این وظایف، نگهداری پرونده های پرسنلی، شامل اطلاعاتی درباره رتبه کارکنان، نرخ حقوق و دستمزد، بیمه و سایر موارد مشابه، بخشی از وظایف تعیین ساعت کارکرد، تسهیم هزینه حقوق و دستمزد، و تهیه فیش و چک پرداخت حقوق و دستمزد است.

باوجود ادغام وظایف متعدد در سیست کامپیوتری، به هیچ وجه از اهمیت کنترل های داخلی کاسته نشده است. عوامل اساسی مربوط به کنترل های داخلی رضایت بخش در سازمان های بزرگ، در مورد سیستم های کامپیوتری نیز مصداق دارد. با وجود تغییر در سازمان عملیات، باز هم تفکیک وظایف و تعیین صریح مسئولیت ها از عوامل اصلی و پا برجا کنترل های داخلی محسوب می شود. به هر حال، این مفاهیم سنتی کنترل، با کنترل های برنامه ای و سخت افزاری کامپیوترها، کاملتر شده است.



خرید فایل


ادامه مطلب ...

کنترل داخلى

کنترل داخلى

سیستم کنترل داخلى مورد عمل در هر دستگاه از دو لحاظ در حسابرسى آن مورد توجه قرار مى‌گیرد. نخست آن‌که در چند دههٔ اخیر، رسیدگى به کنترل‌هاى داخلى برقرار شده در دستگاه مورد رسیدگى جزء استانداردهاى پذیرفته شده و متداول حسابرسى قرار گرفته و به‌طورى که گفتیم حسابرس مکلف است رسیدگى‌هاى خود را بر اساس اصول و موازین قبول شده و متداول حسابرسى انجام داده و این موضوع را در گزارش خود تصریح کند.

دوم آن‌که به‌طورى که ذیلاً شرح داده خواهد شد چگونگى کنترل داخلى و قوّت یا ضعف آن در عمل، تا اندازهٔ بسیار زیادى در نوع رسیدگى‌هاى مورد لزوم حسابرسى و دامنه و عمق این رسیدگى‌ها مؤثر است و بنابراین قبل از شروع به عملیات حسابرسی، لازم است حسابرس قوت و یا ضعف سیستم کنترل داخلى برقرار شده در سازمان مورد رسیدگى را بررسى نموده و برنامهٔ حسابرسى خود را با توجه به آن تنظیم نماید



خرید فایل


ادامه مطلب ...

جزوه کنترل فرآیند رشته مهندسی شیمی


توضیحات محصول:

جزوات آمادگی آزمون کارشناسی ارشد رشته مهندسی شیمی ویژه کنکور سال 95 - به همراه تست ها و پاسخ تشریحی

فصل اول:سیستم های کنترلی
بهره : بهره یک حلقه حاصل ضرب تمام ترنسمیتانس های موجود بر روی شاخه های تشکیل دهنده یک حلقه می باشد.
. بهره این حلقه 2 2 1 مثال: حلقه مقابل دارای سه شاخه است که ترنسمیتانس های شاخه های آن عبارتند از H ,G ,G
G1G H2 2 .باشد می

حلقه: هر مسیر بسته ای که با شروع از یک نقطه به همان نقطه برسیم و از هیچ نقطه ای بیش از یکبار عبور نکرده
باشیم یک حلقه است.
نکته: در تشکیل یک «حلقه» «یا یک مسیر هرگز شاخه ای را که از آن عبور کرده ایم دوباره رد نمی شویم.
مسیر: زمانی که ما از یک نقطه به نقطه دیگر می رویم در واقع یک مسیر را طی کرده ایم.
نکته: اگر بر روی یک شاخه چیزی نوشته نشود یا عدد 1نوشته شود یک را در محاسبه ی بهره تاثیر می دهیم.
نکته: در هنگام برخورد با عدد "1- "دقت داشته باشید که علامت منفی به هیچ وجه به معنای تغییر جهت نیست و
منفی آن صرفا یک عدد را نشان می دهد.

مجموعه تست
1 - مکان هندسی ریشه ها برای سیستم داده شده بر حسب تغییرات a کدام یک از شکلهای زیر میباشد (مهندسی مکانیکی

2ـ در صورتیکه در سیستم مدار بسته نشان داده شده در شکل مقابل ( SL) دارای یک قطب در نیم صفحه راست بوده و
L( ) S تعداد قطبهای
بیشتر ازتعداد صفرهایآنباشد. آنگاه شرط لازم برایپایداریسیستم مداربسته کدام است؟ 3-
( 1
L(o) > o
(2
L(o) < o="">

( 3
L(o) -< 1="">
(4
1<- l(o)="">

3ـ بازدهمقادیر k، برای پایداریسیستم مقابل کدام است؟ -
( 1
o < k=""><1>
( 2
o < k="">< 2/44="">
( 3
o < k="">< 3/15="">
( 4 -2/24 < k="">< o="">

4ـ درمدارزیر اگر ورودی به صورت ttR = ( ) باشد، خطای ماندگارکدام است؟


کدام یک از عبارات زیر در مورد اثرات اضافه شدن قطب وصفر درتابع تبدیل حلقه باز یک سیستم کنترل

همواره معتبر است؟

1) اگرقطب یا صفر اضافه شده در سمت چپ محور jw باشد اثری بر پایداری ندارد.
2) اضافه شدن صفر باعث پایداری بیشتر و اضافه شدن قطب باعث پایداری کمتر میشود.
3) اضافه شدن صفر باعث پایداری کمتر و اضافه شدن قطب باعث پایداری بیشتر میشود.
4) بستگی به تابع تبدیل حلقه باز سیستم کنترل دارد.


Pdfنوع فایل:

m سایز: 15.5b

تعداد صفحه:317

قیمت68000ریال



خرید فایل


ادامه مطلب ...