تحلیل روشهای کاهش ضریب تمرکز تنش با تغییرات شکل هندسی به روش المان محدود توسط نرم افزار CATIA
عنوان صفحه
مقدمه : ................................................................................................................................... 1
فصل اول : تمرکز تنش
1- تمرکز تنش .................................................................................................................. 4
1-1- ضریب تمرکز تنش ............................................................................................... 5
(1-1-1) – تئوری الاستیسته ........................................................................................ 7
(2-1-1) - روش فتو الاستیسته .................................................................................. 11
(3-1-1) – روش کرنش نسبح .................................................................................... 14
(4-1-1) – روش تشابه الکتریکی ............................................................................... 16
(5-1-1) – روش غشاء الاستیک ............................................................................... 17
2-1- روشهای کاهش ضریب تمرکز تنش ................................................................ 17
فصل دوم : معرفی روش اجزای محدود
1-2- مقدمه ....................................................................................................................... 23
2-2- تاریخچه .................................................................................................................... 23
3-2- ساختار روشهای عددی ........................................................................................ 25
1-4- 2- ارکان روش اجزای محدود ........................................................................... 28
2-4-2- روش تحلیل ...................................................................................................... 29
فصل سوم : گسسته سازی مسئله
3-1 – مقدمه ................................................................................................................... 34
3-2 – تقریبات هندسی ............................................................................................... 34
3-3 – ساده سازی از طریق تقارن .............................................................................. 36
3-4 – شکل و رفتار اجزای اساسی ............................................................................ 38
3- 5 – انتخاب نوع جزء ................................................................................................ 40
3- 6- اندازه و تعداد اجزا ............................................................................................... 44
3-7– شکل و اعوجاج اجزا ............................................................................................ 47
3-8– محل گره ها ........................................................................................................... 49
3-9- شماره گزاری گره ها و اجزا ............................................................................. 50
3-10- جمع بندی .......................................................................................................... 55
فصل چهارم : توابع میانیابی و اجزای ساده
4-1- مقدمه ...................................................................................................................... 56
4-2- اجزای ساده مرکب و چند تایی ....................................................................... 59
4-3- چند جمله ای ها ................................................................................................. 61
4-4- مختصات طبیعی ................................................................................................... 66
4-5- کمیات برداری ........................................................................................................ 69
4-6- جز متقارن محوری ................................................................................................ 69
4-7- جمع بندی .............................................................................................................. 70
فصل پنجم : فرآیند مدل سازی و پردازش نتایج
5-1- اعتبار و دقت مدل ............................................................................................... 71
5-2- خواص مدل ............................................................................................................ 71
5-3- اعمال فشار ثابت روی سه جزء خطی ............................................................. 76
5-4- اعمال فشار ثابت روی سه جزء درجه دوم .................................................... 77
5-5- مسئله اتصال انگشتی ........................................................................................... 79
5-6- شرایط قیدی .......................................................................................................... 79
5-7- مدلهای مشابه اجزای محدود با شرایط مرزی مختلف ................................ 81
5-8- روش تغییر چگالی شبکه ................................................................................... 83
5-9- ریز کردن شبکه ..................................................................................................... 85
5-10- شبکه های کوچک شدنی در بررسی همگرایی ........................................ 86
5-11- روش اعو جاج اجزاء .......................................................................................... 90
5-12- شاخص های اعو جاج اجزا ............................................................................ 91
5-13- پردازش نتایج ...................................................................................................... 94
5-14- کنترل کردن مدل .............................................................................................. 97
فصل ششم : تقارن زیر مدل کردن و بررسی اعتبار
6-1- مقدمه .................................................................................................................... 102
6-2- مدل متقارن و بار گذاری نامتقارن ................................................................. 102
6-3- تقارن محوری ........................................................................................................ 104
6-4- انواع تقارن ............................................................................................................. 108
6-5- زیر مدل سازی و زیر سازه سازی .................................................................... 108
فصل هفتم : تحلیل المان محدود : CATIA
7-1- مقدمه ...................................................................................................................... 115
7-2- تعریف پارا متر المان بندی ............................................................................. 122
7-3- المان بندی کلی ................................................................................................... 124
7-4- خواص فیزیکی مدل ........................................................................................... 125
7-5- تعریف جرم ........................................................................................................... 130
7-6- قید گزاری ............................................................................................................ 131
7-7- اعمال بار گزاری ................................................................................................... 132
7-8- انجام آنالیز ............................................................................................................. 133
7-9- مشاهده نتایج ........................................................................................................ 133
فصل هشتم : تحلیل و نتایج تحلیل
پیوست و ضمائم ............................................................................................................... 160
منابع و مآخذ ................................................................................................................... 167
مقدّمه :
در15ژانویه1919، در خیابان تجاری بوستون واقعه ای وحشتناک رخ داد. مخزن بزرگی با27 متر قطر و حدود 15 متر ارتفاع، ناگهان شکست و بیش از 5/7 میلیون لیتر شیره قند در خیابان ریخت .
ناگهان قسمت بالای مخزن به هوا و پهلوها به دو طرف پرتاب شدند. ساختمانی در آن نزدیکی، که کارمندانش در حال صرف نهار بودند، فرو ریخت و چند نفر مدفون شدند و قسمتی از مخزن به ایستگاه آتش نشانی برخورد کرد و تعدادی آتش نشان کشته و مجروح شدند.
به هنگام فروریختن، قسمتی از مخزن به یکی از ستونهای ساختمان بلند شرکت راه آهن بوستون اصابت کرد. این ستون کاملا قطع شد... و ساختمان از حالت قائم خارج و چند فوت نشست کرد... . بر اثر غرق شدن در شیره قند، یا خفگی، و یا در اثر برخورد با آوار دوازده نفر جان باختند، بیش از 40 نفر مجروح شدند. تعداد زیادی اسب که در آن ساختمان می زیستند غرق شدند، وبقیه را نیز بر اثر شدت جراحات مجبور بودند بکشند.
شکست مخزن شیره قند شناخت وقایعی را که به شکست زودرس قطعات مهندسی منجر می شوند، الزامی می کند. گاهی سایر سازه ها نیز به همین سرنوشت دچار می شوند. برای مثال، در بلژیک، کانادا، اتریش و ایالات متحده آمریکا در طی پنجاه سال گذشته چندین پل فرو ریخت ، علاوه بر آن تا به حال در تعداد بسیاری کشتی باری شکست رخ داده است. از مطالعات بعدی نتیجه گیری شده است که این شکستها، که به دو قسمت شدن کشتی منجر می شود، ناشی از تمرکز تنشها در قسمت بالای کشتی و امکان پذیر بودن عبور ترک از قسمت جوش است،جوشهایی که صفحات فولادی دا به همدیگر وصل می کند همچنین نواقص جوشکاری و کیفیت نامطلوب فولاد به فرآیند شکست کمک می کند. اخیرا تعداد زیادی شکست در کشتیهای حامل نفت رخ داده است که به آلودگی سواحل و محلهای غنی از ماهی منجر شده است.
جالب است بدانیم که مسیر شکست در کشتیهای باری شبیه به مسیر شکست در کشتی مسافربری تایتانیک است که در سال 1912 با کوه یخ برخورد و غرق شد، درنتیجه باعث مرگ 1500 مسافر و خدمه کشتی شد. بقایای این کشتی را ابتدا در سال 1985 دکتر رابرت بالارد(Robert Ballard) و همکارانش در عمق 6/3 کیلومتری از سطح اقیانوس اطلس کشف کردند. گاردز و همکارانش حدس زدند که غرق شدن کشتی تایتانیک ناشی از شکست ترد ساختار فولادی است که در اثر برخورد با کوه یخ در شمال اقیانوس اطلس رخ داده است. گانن گزارش کرده است آزمون شکست شارپی که روی یک قطعه از بدنه کشتی در˚-1C انجام شده، تقریباً برابر با دمای آب در لحظه وقوع فاجعه بوده، و تأیید کرد که بدنه کشتی از فولاد ترد ساخته شده است. این فولاد ترد به وجود درصد گوگرد زیاد و یا به دمای زیاد دگرگونی ترد-نرم مرتبط شده است. به علاوه، لبه های قطعاتی که پیدا شده بود... ناصاف، و تقریبأ خرد شده بود و بر روی خود فلز نشانه ای از خمش نبود.
تصاویری را که گروه تحقیق بالارد از اجزای بدنه کشتی تایتانیک گرفتند، مارشال بررسی و نظریه شکست ترد فلز را، که باعث غرق شدن آن بود تأیید کرد. «قطعات شبیه به قسمتهای ترک خوردة پوستة تخم مرغ است و به نظر می رسد که شکست بدون توجه به بستها و مرزهای صفحات گسترش یافته است» عقیده بر این است که جداشدن نهایی قسمت جلو و عقب کشتی به روش زیر رخ داده است:
وقتی قسمت جلوی کشتی به کوه یخ برخورد می کند به زیر آب می رود، بنابر این قسمت عقب کشتی به سمت بالای آب می آید. قسمت معلق عقب کشتی ماکزیمم ممان خمشی را به وسط کشتی اعمال می کند و کشتی را دونیم می کند، این کار روی یا نزدیک به عرشه بالای کشتی، که تنش خمشی از نوع کششی است، رخ داده است. در نتیجه، کمانه کردن قسمت جلو کشتی نزدیک به قسمت پائین به وضوح دیده می شود، این علائم نشان دهندة وجود تنشهای خمشی فشاری نزدیک به کف کشتی است.
با توجه به حوادث ناگوار توأم با هزینه های جانی و مالی، پر واضح است که شناخت پدیده تمرکز تنش و راههای پیشگیری و تعدیل آن امری ضروری و اجتناب ناپذیر می باشد.
فصل اول
1-تمرکز تنش
(1)تمرکز تنش :
درمعادلات اصلی مقاومت مصالح برای محاسبه المان های ساده یک سازه و یا عضوی از یک ماشین بیشتر روابط با فرض اینکه، توزیع تنش در جسم یکنواخت است، به دست آمده و در نتیجه فرم ریاضی ساده ای داشتند. برای مثال در یک میله تحت کشش، با فرض یکنواخت بودن تنش در مقطع، تنش کششی به صورت ساده خواهد بود.
در عمل حالت های زیادی وجود دارد که فرض توزیع تنش یکنواخت همراه با خطا خواهد بود. از جمله این موارد می توان حالت های زیر را نام برد؛
(a) تغییر ناگهانی در مقطع، مثل: تغییر قطر یک محور، جای خار در یک محور، سوراخ در یک ورق کششی، انتهای دنده های یک پیچ، انتهای دنده یک چرخ دنده؛
(b) بار خارجی موضعی، مثل: بار فشاری در سطح کوچکی از یک جسم، بار در محل تکیه گاه یک تیر، نیروی بین چرخ لکوموتیو و ریل، بار در محل تماس دنده های دو چرخ دنده؛
(c) ناپیوستگی در جنس جسم، مثل: حفره های هوا در بتون، گره ها در یک تیر چوبی، وجود اجسام غیرفلزی در فولاد، تغییر مقاومت یا سفتی المان هایی که یک قطعه از آنها ساخته شده است؛
جزء ساده سه بعدی :
اصولی را که تاکنون بحث گردید می توان به سادگی به سه بعد تعمیم داد . یک جزء ساده سه بعدی اساسی یک چهار وجهی با سطوح تخت است که چهار گره دارد که وقتی از هر راس که I نامیده می شود به وجه مقابل نگاه شود گره ها در آن وجه در جهت پاد شاعتگر با I و j و kنمادگذای شده اند شکل ( 4 – 11 ) . شکل کلی چند جمله ای میانیابی این جزء به صورت :
0 = a 1 + a 2 x + a 3 y + a 4 z ( 13 – 4 )
است که می تواند برحسب مقادیر گره ای0 و توابع شکل گره ای به صورت :
0 = n I 0 I + n j 0 j + n k 0 k + n I 0 I= [ N ] { 0 } ( 14 – 4 )
مقادیر ثابت a , b , c , d توابعی از مختصات گره ای می باشند و شکل کلی زیر را می گیرند
4 – 4 : مختصات طبیعی :
هنگامی که معادلات جزء حاکم در فصل های بعدی به دست می آید نشان داده خواهد شد که بسیاری از جملات باید با انتگرال گیری از چند تابع از توابع شکل محاسبه گردد . این کار مشکل نمی باشد زیرا توابع شکل جملاتی خطی ساده از x , y , z هستند ولی با معرفی مختصات طبیعی این کار باز هم ساده تر می شود . مختصات طبیعی سیستم های مختصاتی هستند که برای هر جزء خاص موضعی بوده ولی بی بعد می باشند و حداکثر مقدار واحد را دارند .
مختصات طبیعی یک بعدی :
در یک جزء یک بعدی هر نقطه p با دو مختصات طبیعی L 1 , L 2 مشخص می شود که با نسبت های زیر تعریف می شود :
که L 1 , L 2 همان طور که در شکل ( 4 – 12 ) نشان داده شده است فواصل این نقطه تا گره ها می باشد . با نگاه مجدد به معادله ( 4 – 3 ) واضح می شود که مختصات طبیعی مستقیما معادل با توابع شکل برای این جزء است به نحوی که :
N I = L 1 , N j = L2 ( 18 – 4 )
به جای تغییرات Φ در جزء برای توصیف هندسه جزء از این مختصات طبیعی استفاده می شود . این کار برای یک جزء یک بعدی ارزش کمی دارد ولی برای اجزای دو و سه بعدی و به ویژه اجزای با مرتبه بالاتر این یک مفهوم بسیار مهم است . در یک بعد :
X = L 1 x I + L2 X j = N I x I + N j X j
که با معادله ( 4 – 4 ) قابل مقایسه است . ثابت شده است که انتگرال گیری از توابع شامل L 1 , L 2 که به ترتیب به توانهای b , a رسیده اند روی جزء به سادگی با اعمال فرمول زیر قابل محاسبه است :
L L 1a L2 b dx = a ! B ! L
( a + B + 1 ) !
که a ! فاکتوریل a است مثلا 6 = 1 * 2 * 3 = ! 3 .
مختصات موضعی دوبعدی :
وقتی مفهوم مختصات طبیعی به دو بعد اعمال می شود نتیجه یک مختصه مساحت ( یا مثلث ) می شود . برای مثال ( 4 – 13 ) را در نظر بگیرید که سه مختصه L 1 , L 2 و L 3 را نشان می دهد که نقطه P را تعریف می کند . مختصات طبیعی با نسبت های مساحت های مقابل هر گروه به کل سطح جزء مثلثی تعریف می شود :
آنالیز تیرها با استفاده از روش المان محدود
در روش المان محدود ابتدا سازه به یک یا چند سری المان سازه ای تجزیه می شود که هر سری از این المان ها دارای الگوی هندسی و فرضیات فیزیکی مشابهی می باشند. این المان ها را المان محدود می نامند. این المان ها شکل سازه را مشخص می کنند و توسط نقاط گرهی به المان های مجاور مرتبط می شوند.
برای هر المان می توان یک سری معادلات را در نظر گرفت که کمیتهای فیزیکی را به یکدیگر مربوط می سازند. از سرهم بندی معادلات همه این المان ها، معادلات مربوط به کل سازه بدست می آید که این معادلات بصورت یک دستگاه معادلات چند مجهولی می باشند و به خوبی با کامپیوتر قابل حل هستند. با اعمال شرایط مرزی و بارگذار ( برای مسائل سازه ای ) می توان این دستگاه معادلات را براحتی حل و مجهولات را تعیین نمود و با جایگذاری این مقادیر در معادلات مربوط به المانها، توزیع تنش و تغییر مکان را برای تمام جسم تعیین نمود.
در فصل دوم پروژه روشهای اساسی برای فرمولاسیون المان، سرهم بندی، و تحلیل به روش المان محدود با استفاده از المان خرپایی توضیح داده شده است. در فصل سوم فرمولاسیون و روشهای تحلیل بر اساس روش سختی می باشند. در این روش ابتدا تغییر مکانها و چرخشها و سپس با استفاده از آنها نیروها و لنگرهای داخلی تعیین می شوند.
فهرست مطالب
چکیده ..........................................................................................................1
مقدمه ..........................................................................................................2
فصل اول : کلیات
فصل دوم :
2-1 معادلات سختی برای یک میله خرپایی در مختصات محلی ...............................7
2-2 معادلات سختی با استفاده از روش انرژی ....................................................10
2-3 معادلات سختی با استفاده از روش تعادل تنش کرنش .....................................12
2-4 روش تبدیل مختصات ..............................................................................16
2-5 روش تعادل تنش – کرنش....................................................................... 18
فصل سوم :
3-1 تیرها...................................................................................................50
3-2 خواص معادلات سختی المان تیر................................................................58
3-3 کاربرد المانهای قاب مسطح .....................................................................90
نتیجه گیری................................................................................................103
منابع و ماخذ
منابع لاتین ................................................................................................104
سایت های اطلاع رسانی .............................................................................105
پاورپوینت المان اصلی پارک موزه دفاع مقدس مازندران
معمار: امیر شهراد
موقعیت: ساری، ایران
تاریخ: 1393
وضعیت: طرح پیشنهادی مسابقه / رتبه اول
کارفرما: پارک موزه دفاع مقدس مازندران
پاورپوینت طراحی المان شهری
فایل پاورپوینت طراحی المان شهری(طراحی فضای شهری)،در حجم15 اسلاید قابل ویرایش.
بخشی از متن:
رشد روز افزون،بالا رفتن سطح آگاهی افراد،بالا رفتن سطح نیاز شهروندان،لزوم استاندارد سازی زندگی شهری بخصوص در کلانشهرها همه و همه نیاز به طراحی و زیبا سازی فضاهای شهری را سبب می شود.
افراد استفاده کننده از فضاهای شهری طیف وسیعی از انسانها با سطح نیازها و خواسته های متفاوت می باشند.
فهرست مطالب :
مقدمه
تعریف المان شهری
بنای یادبود
المان هنری
توجه به فرهنگ
توجه به اقلیم
انواع المان
این فایل با فرمت پاورپوینت در15اسلاید قابل ویرایش تهیه شده است.
پاورپوینت آنالیز المان محدود سه بعدی روی تقابل و برهم کنش خاک - شمع دسته شمعی غیر فعال شامل 30اسلاید (ویژه رشته های مهندسی عمران و ساختمان) می باشد. در ادامه بخشی از متن این پاورپوینت و فهرست آن را برای شما قرار داده ایم و در انتها نیز تصویری از پیش نمایش اسلایدهای این پاورپوینت را برای شما قرار داده ایم تا بتوانید جزییات آن را مشاهده نمایید و در صورت تمایل به داشتن این پاورپوینت ، اقدام به خرید آن نمایید.
تقابل و بر هم کنش بین شمع و خاک نرم دسته شمعی غیر فعال در معرض خاک همراه با مدل المانی محدود سه بعدی با استفاده از نرم افزارAnsys آنالیز شد. خاک مطابق با معیار محصول Drucker-pragey در آنالیز فرض شد که الساستو پلاستیک می شود.
جابجایی زیاد خاک در نظر گرفته شد و عناصر تمامی برای ارزیابی تقابل بین شمع و خاک استفده شد. تاثیرات عمق خاک لایه و شمار شمع ها روی فشار جانبی شمع جستجو می شد و توزیعات فشار جانبی روی گره شمعی ( 1* 2 ) و روی گروه شمعی (2*2 ) مقایسه شد.
نتایج نشان می دهد که سریار ( بارزنده ) مجاور ممکن است منجر با حرکات برجسته ی جانبی خاک نرم و فشار قابل ملاحظه روی شمع شود. فشار عمل کننده روی ردیفی، نزدیک به بارزنده نسبت با ردیف های دیگر بیشتر و بالاتر می باشد ( به سبب مانع و تاثیرات طاق سازی در دسته ی شمع ها ).
بار غیر فعال و توزیعش می بایست در طرح شمع های غیر فعال در نظر گرفته میشود. کلمات کلیدی: تقابل و بر هم کنش خاک- شمع، دسته شمعی غیر فعال؛ خاک نرم، فشار جانبی؛ تغییر شکل فیزیکی در ساختمان؛ انالیز المان محدود سه بعدی.
2-اکثریت شمع ها برای نگهداشتن بارهای فعال، طراحی می شود یعنی بارهای رو ساختار مستقیمأ توسط کاهک با فنداسیون شمع انتقال داده می شود. با وجود این، در خیلی موارد، بارها برای تحمل بارهای غیر فعال، که توسط تغییر شکل فیزیکی و حرکت خاک اطراف شمع ها به سبب وزن خاک و بار اضافی ایجاد می شود، طراحی نمی شوند.
.
عنوان
انالیز المان محدود سه بعدی روی تقابل و برهم کنش خاک - شمع دسته شمعی غیر فعال
چکیده
مقدمه
مدل تعلیلی
دسته شمعی (2×2 )4
پروژه های خود ترمیم شونده
.
عنوان: آنالیز المان محدود سه بعدی روی تقابل و برهم کنش خاک - شمع دسته شمعی غیر فعال
فرمت: پاورپوینت
تعداد صفحات: 30 اسلاید
ارائه شده در: فروشگاه های سازه برتر
.
تصویر پیش نمایش اسلایدهای این پاورپوینت:
نقش خازنها به عنوان المان های الکتریکی و الکترونیکی
نقش خازنها به عنوان المان های الکتریکی و الکترونیکی کارآمد در صنایع مربوط به تولید و انتقال و توضیع امروزی غیر قابل انکار است بگونه ای که دیگر هرگز نمی توان چنین صنایعی را بدون وجود خازنهای نیرو متصور شد.از این رو شناخت کامل خازنها و عوامل تاثیر گذار برآنها و حفظ و نگهداری و نظارت دقیق بر آنها ، برای افزایش طول عمر خازن ها و کار کرد بهینه آنها امری است الزامی و اجتناب ناپذیر.
کلید واژه- خازن قدرت ، فرکانس ، هارمونیک ها.
مقدمه
درسالهای اولیه هارمونیکها در صنایع چندان رایج نبودند.به خاطر مصرف کننده های خطی متعادل. مانند : موتورهای القایی سه فاز،گرم کنندها وروشن کننده های ملتهب شونده تا درجه سفیدی و ..... این بارهای خطی جریان سینوسی ای در فرکانسی برابر با فرکانس ولتاژ می کشند. بنابراین با این تجهیزات اداره کل سیستم نسبتا با سلامتی بیشتری همراه بود. ولی پیشرفت سریع در الکترونیک صنعتی در کاربری صنعتی سبب بوجود آمدن بارهای غیر خطی صنعتی شد. در ساده ترین حالت ، بارهای غیرخطی شکل موج بار غیر سینوسی از شکل موج ولتاژ سینوسی رسم می کنند (شکل موج جریان غیر سینوسی).
پدیدآورنده های اصلی بارهای غیر خطی درایوهای AC / DC ، نرم راه اندازها ، یکسوسازهای 6 / 12 فاز و ... می باشند. بارهای غیرخطی شکل موج جریان را تخریب می کنند. در عوض این شکل موج جریان شکل موج ولتاژ را تخریب می نماید. بنابراین سامانه به سمت تخریب شکل موج در هر دوی ولتاژ و جریان می شود. در این مقاله سعی شده است تا بزبانی هرچه ساده تر توضیحی در مورد نحوه عملکرد هارمونیک ها و راه کاری برای دوری از تاثیر گذاری آنها بر خازنها ی نیرو ارائه شود.
اساس هارمونیک ها :
اصولا هارمونیک ها آلوده سازی شکل موج را در اشکال سینوسی آنها نشان می دهند. ولی فقط در مضارب فرکانس اصلی . تخریب شکل موج را می توان در فرکانس های مختلف (مضارب فرکانس اصلی) بعنوان یک نوسان دوره ای بوسیله آنالیز فوریه تجزیه و تحلیل کرد. در حال حاضر هارمونیکهای فرد و زوج و مرتبه 3 در اندازه های مختلف ضرایب فرکانس های مختلف در سامانه های الکتریکی موجودند که مستقیما تجهیزات سامانه الکتریکی را متاثر می سازند. در معنایی وسیعتر هارمونیکهای زوج و مرتبه 3 هریک تلاش می کنند که دیگری را خنثی نمایند. ولی در مدت زمانی که بار نا متعادل است این هارمونیک های زوج و مرتبه 3 منجر به اضافه بار در نول و اتلاف انرژی شدید می شوند. با تمام احوال هارمونیک های فرد اول مانند هارمونیک پنجم ، هفتم ، یازدهم ، سیزدهم و .... عملکرد این تجهیزات الکتریکی را تحت تاثیر قرار می دهند. برای فهم بهتر تاثیر هارمونیک ها ، شکل زیر تاثیر تخریب هارمونیک پنجم بر شکل موج سینوسی را نشان می دهد :
هارمونیک های ولتاژ و جریان تاثیرات متفاوتی بر تجهیزات الکتریکی دارند. ولی عموما بیشتر تجهیزات الکتریکی به هارمونیکهای ولتاژ بسیار حساس اند. تجهیزات اصلی نیرو مانند موتورها، خازن ها و غیره بوسیله هارمونیکهای ولتاژ متاثر می شوند. به طور عمده هارمونیکهای جریان موجب تداخل مغناطیسی (Magnetic Interfrence) و همچنین موجب افزایش اتلاف در شبکه های توزیع می شوند. هارمونیکهای جریان وابسته به بار اند ، در حالی که سطح هارمونیکهای ولتاژ به پایداری سامانه تغذیه و هارمونیکهای بار (هارمونیکهای جریان) بستگی دارد. عموما هارمونیک های ولتاژ از هارمونیک های جریان کمتر خواهند بود.
نوع فایل:word
سایز :73.2 kb
تعداد صفحه:16