پویا فایل

پویا فایل

پویا فایل

پویا فایل

پردازش دیجیتالی تصویر ، معرفی میکرو کنترلر 8051

پردازش دیجیتالی تصویر ، معرفی میکرو کنترلر 8051


پیشگفتار:

با ساخت وسایل الکترو مغناطیسی نظیر انواع الکتروموتورها، بوبین ها ،رله ها وغیریه ،انسان قادر شد با بهره گیری از الکترونیک ، کنترل ابزارهای مکانیکی را در دست گیرد و سر انجام با پیدایش میکرو پروسسورها و با توجه به توانایی آنها در پردازش اطلاعات و اعمال کنترلی و همچنین قابلیت مهم برنامه پذیر بودن آنها تحول شگرفی در ساخت تجهیزات الکترونیکی و صنعتی وغیره به‌وجودآمد.

پیشرفت ها و تحولات اخیر باعث پیدایش اتوماسیون صنعتی شده که در بسیاری از موارد جایگزین نیروی انسانی می گردد.به عنوان نمونه انجام امور سخت در معادن و یا کارخانه ها و یا کارهایی که نیازمند دقت وسرعت بالا می‌باشد و یا انجام آن برای نیروی انسانی خطر آفرین است به انواع دستگاهها و رباتها سپرده شده است. همچنین با پیشرفت الکترونیک در زمینه ساخت سنسورها . بالا رفتن دقت آن ها، امروزه انواع گوناگونی از حس گرها در دنیا تولید می شود که در ساخت رباتها و در زمینه اتوماسیون نقش مهمی را ایفا می‌کنند.
در این پایان نامه پس از مباحثی در مورد پردازش دیجیتالی تصویر ، معرفی میکرو کنترلر 8051 بصورت مختصر و در حد نیاز و بخش کوچکی در مورد استپ موتورها به طراحی وپیاده سازی نمونه ای کوچک از یک ماشین مسیر یاب پرداخته شده است .شایان ذکر است که مطالب مربوط به طراحی وساخت ماشین بگونه ای بیان شده که توسط هر فردی که آشنایی مختصری با میکرو کنترلرها داشته باشد، قابل پیاده سازی است.

در خاتمه از استاد گرانقدر جناب آقای همایون موتمنی و نیز تمام کسانی که در این امر مرا یاری دادند، از جمله مهندس فیض ا... خاکپور و نیز دوست عزیزم مهدی جعفری ، تشکر و قدردانی می نمایم.


فصل اول

آشنایی با ماشین بینایی و تصویر برداری د

1-1کلیات

تکنولوژی ماشین بینایی وتصویر بر داری دیجیتالی شامل فرایند هایی است که نیازمند بکارگیری علوم مختلف مهندسی نرم افزار کامپیوتر می باشد این فرایند را می توان به چند دسته اصلی تقسیم نمود :

1- ایجاد تصویر به شکل دیجیتالی

2- بکارگیری تکنیکهای کامپیوتری جهت پردازش ویا اصلاح داده های تصویری

3- بررسی و استفاده از نتایج پردازش شده برای اهدافی چون هدایت ربات یا کنترل نمودن تجهیزات خود کار ، کنترل کیفیت یک فرایند تولیدی ، یا فراهم آوردن اطلاعات جهت تجزیه و تحلیل آماری در یک سیستم تولیدی کامپیوتری (MAC)

ابتدا می بایست آشنایی کلی ، با هر یک از اجزاء سیستم پیدا کرد و از اثرات هر بخش بر روی بخش دیگر مسطح بود . ماشین بینایی و تصویر بر داری دیجیتالی از موضوعاتی است که در آینده نزدیک تلاش و تحقیق بسیاری از متخصصان را بخود اختصاص خواهد بود.

در طی سه دهه گذشته تکنولوژی بینایی یا کامپیوتری بطور پراکنده در صنایع فضایی نظامی و بطور محدود در صنعت بکار برده شده است . جدید بودن تکنولوژی ، نبودن سیستم مقرون به صرفه در بازار و نبودن متخصصین این رشته باعث شده است تا این تکنولوژی بطور گسترده استفاده نشود .

تا مدتی قبل دوربین ها و سنسورهای استفاده شده معمولا بصورت سفارشی ومخصوص ساخته می شدند تا بتوانند برا ی منظورخاصی مورد استفاده قرار گیرند همچنین فرایند ساخت مدارهای مجتمع بسیار بزرگ آنقدر پیشرفت نکرده بود تا سنسورهای حالت جامد با رزولوشن بالا ساخته شود .

استفاده از سنسورهای ذکر شده مستلزم این بود که نرم افزار ویژه ای برای آن تهیه شود و معمولا این نرم افزارها نیز نیاز به کامپیوتر هایی با توان پردازش بالا داشتند. علاوه بر همه این مطالب مهندسین مجبور بودند که آموزشهای لازم را پس از فراغت از تحصیل فرا گیرند . زیرا درس ماشین بینایی در سطح آموزشهای متداول مهندسی در دانشگاهها وبه شکل کلاسیک ارائه نمی شد .

تکنولوژی ماشین بینایی در دهه آینده تاثیر مهمی بر تمامی کارهای صنعتی خواهد گذاشت که دلیل آن پیشرفتهای تکنولوژی اخیر در زمینه های مرتبط با ماشین بینایی است واین پیشرفتها در حدی است که استفاده از این تکنولوژی هم اکنون حیاتی می باشد .


2-1-بینایی واتوماسیون کارخانه

وظایف اساسی که می تواند توسط سیستمهای ماشین بینایی انجام گیرد شامل سه دسته اصلی است.

1- کنترل

2- بازرسی

3- ورود داده

کنترل در ساده ترین شکل آن مرتبط با تعیین موقعیت و ایجاد دستورات مناسب می باشد تا یک مکانیزم را تحریک نموده ویا عمل خاصی صورت گیرد . هدایت نقاله های هدایت شونده خود کار (AGVS) در عملیات انتقال مواد در یک کارخانه هدایت مشعل جوشکاری در امتداد یک شمایر یا لبه یا انتخاب یک سطح بخصوص برای انجام عملیات رنگ پاشی توسط ربات ، مثلهایی از بکار گیری ، ماشین بینایی در کنترل می باشند . کاربردهای ماشین بینایی در بازرسی مرتبط با تعیین برخی پارامترها می باشد . ابعاد مکانیکی وهمچنین شکل آن ، کیفیت سطوح ، تعداد سوراخها در یک قطعه ، وجود یاعدم وجود یک ویژگی یا یک قطعه در محل خاصی از جمله پارامترهایی هستند که توسط ماشین بینایی ممکن است ، بازرسی می شوند عمل اندازه گیری توسط ماشین بینایی کم و بیش مشابه بکار‌گیری روشهای سنتی استفاده از قیدها و سنجه های مخصوص و مقایسه ابعاد می باشد . سایر عملیات بازرسی بجز موارد اندازه گیری شامل مواردی چون کنترل وجود بر چسب بر روی محصول بررسی رنگ قطعه ، وجود مواد خارجی در محصولات غذایی نیز با تکنیکهای خاصی انجام می گیرد . کار بازرسی ممکن است حتی شامل مشخص نمودن خواص یا ویژگیهایی الکتریکی یک محصول گردد . با مشاهده خروجی اندازه گیرهای الکتریکی می توان صحت عملکرد محصولات الکتریکی را بازرسی نمود . هر چند که در چنین مواردی چنانچه سیستم بینایی کار دیگری بجز مورد ذکر شده انجام ندهد معمولا روش ساده تر و مقرون به صرفه ترین بدین صورت خواهد بود که کار بازرسی فوق توسط یک ریز پردازنده و ابزارهای مربوط انجام گیرد .

اطلاعات مربوط به کیفیت محصول ویا مواد وهمچنین تعقیب فرایند تولید را می توان توسط ماشین بینایی گرفته ودر بانک اطلاعاتی سیستم تولید کامپیوتری جامع بطور خود کار وارد نمود . این روش ورود اطلاعات بسیار دقیق و قابل اعتماد است که دلیل آن حذف نیروی انسانی از چرخه مزبور می باشد . علاوه بر این ورود اطلاعات بسیار مقرون به صرفه خواهد بود چرا که اطلاعات بلافاصله پس از بازرسی وبه عنوان بخشی از آن جمع آوری و منتقل می شوند .

میزان پیچیدگی سیستم های بینایی متفاوت می باشد این سیستم ها ممکن است منحصر به یک سیستم بارکدینگ معمولی که برای مشخص نمودن محصول جهت کنترل موجودی بکار می رود تشکیل شده باشد یا ممکن است متشکل از یک سیستم بینایی صنعتی کامل برای اهدافی چون کنترل کیفیت محصول باشد .


3-1 سرعت واکنش

زمان مورد نیاز برای تصمیم گیری توسط ماشین بینایی بستگی به اندازه ماتریس تصویر یا زمان پردازش لازم در کارت تصویر گیر و نوع دوربین دارد . دوربیهایی نوع لاچکی که با استاندارد Rs-170 کار می کنند تعداد 30 تصویر در ثانیه تولید می کنند که این تصاویر بر روی مونیتورهای موجود در بازار قابل نمایش هستند . چنانچه از استاندارد Rs-170 استفاده نشود می توان تعداد تصاویر در ثانیه را پنج تا ده برابر افزایش داد . دوربینهای حالت جامد می توانند در زمان بسیار کوتاه معادل ( میکرو ثانیه تصویر گیری کنند زمان لازم جهت خواندن سیگنال تصویر از سنسور دوربین بستگی به اندازه ماتریس سنسور سرعت پردازش و پهنای باند سیستم دارد. با استفاده از تکنیکهای پردازش موازی می توان زمان پردازش را متناسب با تعداد پردازشگرهای موازی کاهش داد .

زمان واکنش سیستم بینایی انسان در حدود 6% ثانیه یا 16/1 ثانیه می باشد این موضوع توسط این حقیقت تائید می شود که وقتی تصاویر ، با سرعت 30 عدد در ثانیه یک صحنه متحرک را نشان می دهند چشم انسان قادر به تشخیص انقطاع بین تصاویر نیست .

سیستم های ماشین بینایی مورد استفاده در صنعت که برای کنترل بر چسب روی بطریها بکار می رود می توانند با سرعتی معادل 900 بطری در دقیقه یا در صورت یک بطری در 7% ثانیه کار کنند . البته می توان با گرفتن تصاویری که بیش از یک بطری را در بر می گیرد سرعت کنترل را بیش از این نیز افزایش داد . سرعت چشم انسان برای انجام کار مشابه حداکثر 60 بطری در دقیقه می باشد که این سرعت در اثر خستگی و شرایط نامساعد محیطی کاهش نیز می یابد .

بطور خلاصه تصویر گیری توسط ماشین بینایی تقریبا 10 برابر سرعت بینایی انسان می باشد این نسبت با پیشرفت تکنولوژی در علوم الکترونیک رو به افزایش می باشد در حالیکه سرعت چشم انسان مقدار مشخصی است سرعت انجام فرایند کامل توسط ماشین بینایی در حدود 15 برابر چشم انسان می باشد .


4-1 واکنش طیف موج

چشم انسان فقط در مقابل نور قابل رویت که طیف محدودی است می تواند اشیاء را ببیند . دامن دید از طول موج بنفش در 390 میکرون تا طول موج قرمز در 790 میلی میکرون می باشد
واکنش سیستم ماشین بینایی در مقایسه با چشم انسان بسیار وسیع تر بوده و دامنه از پرتو گاما و X در منطقه طول موج کوتاه شروع شده وتا طول موج مادون قرمز در قسمت طول موجهای طویلی ختم می شود .

توانایی چشم انسان در تشخیص رنگها و پیچیده بوده ودر هنگام تشخیص رنگ مولفه های آن بطور مجزا در نظر گرفته نمی شوند . در عوض میانگین ، انرژی در طول موجهای مختلف مورد استفاده قرار گرفته ورنگ دیده شده یکی از طول موجهای مابین آنها می باشد .

ماشین بینایی برای شناسایی رنگها نیازمند سه دسته اطلاعات است که همان مولفه های رنگ یعنی طول موجهای قرمز یا سبز و آبی می باشد ایجاد رنگ بر روی مانیتور نیز با تحریک هر یک از مولفه ها به مقدار معین بوده بطوریکه نهایتا رنگ مورد نظر ایجاد شود .

ذخیره سازی تصاویر رنگی به حافظه ای معادل سه برابر تصاویر غیر رنگی نیاز دارد .

همچنین حجم پردازش تصاویر رنگی که حاوی اجزاء B,G,R می باشند در مقایسه با تصاویر یک رنگ بیشتر می باشد .

بطور خلاصه طیف طول موج قابل رویت توسط ماشین بینایی بسیاروسیعتر از طیف قابل رویت توسط چشم انسان می باشد همچنین امکان تلفیق و استفاده از طول موجهای مختلف یک تصویر توسط ماشین بینایی وجود دارد یکنواختی و دقت ماشین بینایی در مورد تصاویر رنگی بیش از چشم انسان می باشد .



5-1مقایسه بینایی انسان و ماشین بینایی

ماشین

انسان


محدود به تنظیمات اولیه ،نیازمند داده های عددی

بسیار تطبیق پذیر وانعطاف پذیر در مقابل نوع کار و ورود اطلاعات

انعطاف پذیری

قادر به اندازه گیری ابعادی می باشد مثال : طول یک قطعه برحسب تعداد پیکسل

قادر به تخمین نسبتا دقیق موارد توصیفی مثل : تشخیص میوه بد از روی رنگ و شکل آن

توانایی

اندازه گیری مقدار هر یک از R,B

بیان توصیفی از رنگ

رنگ

حساس به فرکانس و سطح روشنایی


قابلیت تطبیق ، باشرایط نوری ،خواص فیزیکی

حالت





ماشین

انسان


حساس به خواص فیزیکی سطح جسم ، قابلیت بیان سطح خاکستری به صورت عددی دقیق و مشخص ،براحتی قادر به تشخیص 256 سطح خاکستری می باشد

سطح اجسام و فاصله تا جسم ، محدودیت در توانایی تشخیص مقدار سطوح خاکستری بستگی به بیننده دارد و ممکن است در یک زمان متفاوت از زمان دیگر باشد مقدار سطوح خاکستری قابل تشخیص بین 7 تا 10 می باشد

حساسیت

بسیار بالا که البته بستگی به پردازشگر مورد استفاده و پهنای بانددارد سرعت واکنش در حدود ثانیه بوده وسرعتهای بالاتر نیز از نظر تکنیکی قابل دسترسی است.

سرعت واکنش کند و حداکثر در حدود 10/1ثانیه می باشد

واکنش

صحنه های دو بعدی براحتی قابل تشخیص می باشد ودر صحنه های سه بعدی براحتی مقدور نیست و نیازمند به 2 دوربین بوده وسرعت نیز کم است .

صحنه های سه بعدی براحتی قابل درک می باشد

دو و سه بعدی

اطلاعات اخذ شده بطور خودکار و مداوم وارد بانک اطلاعاتی می شود ، انتقال ورود و اطلاعات دقیق و کم هزینه می باشد.

اطلاعات اخذ شده می بایستی بطور دستی انتقال داده شود هزینه انتقال و ورود اطلاعات زیاد بوده و میزان خطا زیاد می باشد .

خروج داده ها

می تواند به هر دو صورت خطی و لگاریتمی دریافت کند .

محدوده طیف از طول موجهای پائین پرتو تا طول موجهای بالای مادون قرمز می باشد .

براساس مقیاس لگاریتمی است و متاثر از رنگ زمینه می باشد

محدود به طیف قابل رویت از 300 تا 700میلی میکرون

دریافت داده ها


طول موج

6-1 سیستم بینایی چیست ؟

1-6-1 کلیات سیستم

یک سیستم ماشین بینایی شامل تمام اجزاء لازم بمنظور تهیه ، تعریف دیجیتالی یک تصویر تغییر واصلاح داده ها وارائه نمایش داده های تصویری دیجیتالی به دنیای بیرون می باشد چنین سیستمی چنانچه در یک محیط صنعتی بکار گرفته شود ، ممکن است به دلیل اینکه متصل به سایر تجهیزات خط تولید می باشد بسیار پیچیده بنظر می رسد ولی اگر چنانچه با توجه به نقش و وظیفه سیستم بینایی اجزاء اصلی تشکیل دهنده آن بیان شوند ، مشخص خواهد شد که پیچیدگی زیادی در سیستم وجود ندارد اجزاء اصلی سیستم شامل سه قسمت اصلی است :

1- قسمت تصویر برداری

2- پردازش

3- نمایش یا وسایل خروجی اطلاعات

2-6-1 تصویر گیری

تصویر گیری در ماشین بینایی یعنی تبدیل اطلاعات تصویری یک شئی فیزیکی و خواص ظاهری آن بصورت داده های عددی است بگونه ای که این تصویر می تواند از توسط پردازشگر پردازش شود تصویر گیری ممکن است شامل چهار فرایند زیر باشد :

1- نور پردازی

2- تشکیل تصویر یا متمرکز کردن آن

3- تبدیل تصویر به سیگنالهای الکتریکی

4- قالب بندی کردن سیگنال خروجی تصویر

3-6-1 نور پردازی

نور پردازی یک عامل کلیدی وتاثیر گذ ار بر روی کیفیت تصویر تشکیل شده است که به عنوان ورودی ماشین بینایی مورد استفاده قرار می گیرد ممکن است تا 30 درصد حجم کار و تلاش طراحی اجزاء یک سیستم ماشین بینایی را بخود اختصاص دهد .

بسیاری از سیستم های ماشین بینایی که در گذشته در صنعت بکار رفته اند از نور قابل رویت استفاده کرده اند که علت آن از یک طرف در دسترس بودن آن واز طرف دیگر خود کار نمودن عمل بازرسی که قبلا توسط کارگر انجام می شده است می باشد بازرسی توسط کارگر براساس توانایی چشم ودر محدوده طول موج نور قابل رویت می باشد چهار نوع لامپ از لامپهایی که نور قابل رویت تولید می کنند واغلب در صنعت استفاده شده اند عبارتند از : لامپهای التهابی فلورسنت بخار جیوه وبخار سدیم استفاده از نور غیر قابل رویت شبیه اشعه ایکس ماوراء بنفش و مادون قرمز بدلیل نیاز به انجام بررسی های ویژه که توسط نور قابل رویت انجام پذیر نیست ، روبه افزایش است روشهای نور پردازی جهت کار بردهای صنعتی ماشین بینایی شامل چهار دسته زیر است :

1- نور پردازی از پشت

2- نور پردازی از مقابل

3- نور پردازی دارای ساختار

4- نور پردازی لحظه ای

نور پیرامون محیط کار که منابعی بجز منبع اصلی نور پردازی سیستم ماشین بینایی بر مجموع میزان نور تابیده شده برجسم اثر گذاشته وبطور کلی بصورت نویز در داده های تصویری ظاهر می شود .

برای کم کردن تاثیر نور پیرامونی می توان از پرده نوری یا دیواره های محافظ استفاده نمود تا از ورود آن به لنز دوربین جلوگیری شود .


1-3-6-1 نور پردازی از پشت :

وقتیکه شی مورد بررسی بین دوربین و منبع نور قرار می گیرد نور پردازی را اصطلاحا نور پردازی از پشت می گویند در این روش سایه ای از جسم تشکیل می شود و مرز جسم کاملا مشخص می باشد .




(شکل 1-1)



مزیت نور پردازی از پشت ایجاد تصاویر با کنتر است بالاو تفکیک آسان مرز جسم می باشد کنتر است بالاباعث کم شدن پردازش های بعدی شده همچنین از حساسیت سیستم به تغییرات نوردهی منبع نور می کاهد در مورد نور پردازی اجسامی که مسطح نیستند ممکن است لازم باشد تا با استفاده از عدسی های مناسب نور به جسم تابانده شود .

روش نور دهی از پشت برای اعمالی از قبیل تشخیص ترک ، مک و وجود اشیاء خارجی در قطعات شفاف ایده آل می باشد . تشخیص ترک الستخوان در تصاویر اشعه X واندازه گیری میزان تنش انرژی و حرارتی از یک ساختمان توسط پرتو مادون قرمز از جمله مثالهای این روش نور پردازی می باشند .

اساسا تصویر حاصل از روش نور دهی از پشت تک رنگ است با توجه به اینکه لب های تصویر بگونه ای بر روی صفحه سنسور تشکیل تصویر می دهند که ممکن است یک پیکسل کامل را پر نکنند .

بنابراین این پیکسلها دارای مقادیر حدود سطحی بین سیاه و سفید مطلق خواهند بود به عنوان مثال مقدار عددی پیکسل که 50 درصد آن توسط جسم پوشیده شده است در یک سیستم دارای 16 سطح خاکستری معادل عدد 7 خواهد بود و بطور کلی مقدار عددی هر پیکسل که نشانگر مرزهای قطعه باشد متناسب با مقدار پوشش آن خواهد بود شی نشان داده شده در صفحه بعد در قسمت مرزها ، فقط بخشی از مساحت پیکسلها را پوششی می دهد که مقادیر عددی پیکسلها یا همان سطح خاکستری بدست آمده برای پیکسلها در ماتریس تصویر نشان داده شده است شایان ذکر است که مقدار عددی پیکسلها وهمچنین مقدار کاهش یافته آن نمی تواند هیچگونه اطلاعاتی در خصوص شکل قطعه ارادئه دهد و بایستی اطلاعات مربوط به اینکه چه شکلی در مقابل دوربین قرار گرفته است با مقادیر عددی پیکسلها توام گردد.



خرید فایل


ادامه مطلب ...

کنترل اتوماتیک فشارخون با استفاده از کنترلر PID و تنظیم پارامترهای آن توسط الگوریتم ژنتیک

کنترل اتوماتیک فشارخون با استفاده از کنترلر PID و تنظیم پارامترهای آن توسط الگوریتم ژنتیک

توجه :

شما می توانید با خرید این محصول فایل " قلق های پایان نامه نویسی (از عنوان تا دفاع)" را به عنوان هدیه دریافت نمایید.

چکیده

کنترل اتوماتیک فشارخون با استفاده از کنترلر PID و تنظیم پارامترهای آن توسط الگوریتم ژنتیک

فشارخون بالا زمانی ایجاد می شود که فشارخون در دیواره رگ ها بیش از حد معمول بالا رود که این وضعیت بسیار خطرناک است چون گاهی اوقات تاْثیرات مخرب آن در مرور زمان افزایش می یابد ، پس ثابت نگه داشتن سطح فشارخون در حالت نرمال حائز اهمیت است . کنترل PID به دلیل سادگی و مقاوم بودن آن تا کنون در کنترل بسیاری از پروسه های صنعتی مورد استفاده قرار گرفته است. معمولا در کاربردهای صنعتی، پارامترهای کنترلر PID به صورت دستی و با سعی و خطا تنظیم می شود. تنظیم پارامترهای کنترلر به صورت دستی، کارایی آن را به ویژه در شرایطی که زمان اهمیت دارد و نیز در مواردی که پارامترهای پلانت از قبل مشخص نباشد، کاهش می دهد. لذا در سالهای اخیر کار تحقیقاتی زیادی در زمینه تنظیم اتوماتیک پارامترهای کنترلر PID انجام گرفته و از بسیاری از تکنیک های هوشمند مانند الگوریتم های ژنتیک، بهینه سازی انبوه ذرات و ... برای تنظیم پارامترهای این کنترلر استفاده شده است.

در این پایان نامه، از الگوریتم ژنتیک جهت تنظیم پارامترهای کنترلر PID استفاده شده است. تنظیم اتوماتیک پارامترهای کنترلر توسط الگوریتم ژنتیک، دقت و سرعت کنترلر را به طرز قابل توجهی بهبود بخشیده و انعطاف کنترلر را برای برخورد با سیستمهای مختلف افزایش می دهد. کنترلر PID-GA پیشنهادی ، جهت تنظیم نرخ تزریق دارو به منظور کنترل فشار خون بیمار مورد استفاده قرار گرفته است. نتایج شبیه سازی ها نشان می دهد که این کنترلر با دقت و سرعت مناسب، سطح فشار خون بیمار را به حالت نرمال برمی گرداند و تغییر پارامترهای بیمار نیز در کارایی کنترلر تاثیری نخواهد داشت.

فهرست مطالب

عنوان صفحه

فصل اول مقدمه 1

فصل دوم بیماری فشارخون و روش های درمان پزشکی 4

2-1 مقدمه 4

2-2 تعریف فشار خون 6

2-3 انواع فشار خون 7

2-3-1 علائم 7

2-3-2 تشخیص 8

2-3-3 درمان 8

2-4 افزایش فشار خون 11

2-4-1 شکل فشار خون بدخیم یا تشدید شده 12

2-5 عوارض ناشی از فشار خون بالا 12

2-5-1 نارسایی قلبی 12

2-5-2 نارسایی کلیه 13

2-5-3 ضعف بینایی 13

2-5-4 سکته مغزی 13

2-5-5 حمله گذرای ایسکمی 14

2-5-6 فراموشی 14

2-5-7 بیماری عروق قلبی 14

2-5-8 سکته (حمله) قلبی 15

2-5-9 بیماری عروق محیطی 15

2-6 شیوه های درمان فشار خون بالا 15

2-7 برخی داروهای پایین آورنده فشار خون 16

فصل سوم استفاده از الگوریتم ژنتیک در تنظیم پارامترهای کنترلر PID 17

3-1 مقدمه 17

3-2 کنترلر PID 18

3-2-1 مقدمه 18

3-2-2 اجزای کنترلر 19

3-2-3 PID پیوسته 20

3-2-4 بهینه سازی کنترلر 20

3-2-5 مشخصات کنترلر های تناسبی-مشتق گیر-انتگرالگیر 21

3-2-6 مثالی از تنظیم پارامترهای کنترلر PID 22

3-2-6-1 کنترل تناسبی 23

3-2-6-2 کنترل تناسبی – مشتق گیر 24

3-2-6-3 کنترل تناسبی – انتگرالی 25

3-2-6-4 اعمال کنترلر PID 26

3-3 الگوریتم ژنتیک 27

3-3-1 مقدمه 27

3-3-2 تاریخچه الگوریتم ژنتیک 28

3-3-3 زمینه های بیولوژیکی 29

3-3-4 فضای جستجو 30

3-3-5 مفاهیم اولیه در الگوریتم ژنتیک 31

3-3-5-1 اصول پایه 31

3-3-5-2 شمای کلی الگوریتم ژنتیک 31

3-3-5-3 کد کردن 32

3-3-5-4 کروموزوم 32

3-3-5-5 جمعیت 33

3-3-5-6 مقدار برازندگی 33

3-3-5-7 عملگر برش 34

3-3-5-8 عملگر جهش 36

3-3-6 مراحل اجرای الگوریتم ژنتیک 38

3-3-7 همگرایی الگوریتم ژنتیک 43

3-3-8 شاخص های عملکرد 44

3-3-8-1 معیارITAE 44

3-3-8-2 معیار IAE 44

3-3-8-3 معیار ISE 44

3-3-8-4 معیار MSE 45

3-4 تنظیم پارامترهای کنترلر PID با استفاده از الگوریتم ژنتیک 45

3-4-1 تاریخچه 46

3-4-2 نحوه تنظیم پارامترهای کنترلر PID با استفاده از الگوریتم ژنتیک 46

3-5 مدل سازی ریاضی سیستم تنظیم فشار خون 47

3-5-1 مقدمه 47

3-5-2 مدل های دینامیکی توسعه داده شده 48

3-5-2-1 مدل اول 48

3-5-2-2 مدل دوم 49

3-5-2-3 مدل سوم 50

3-5-2-4 مدل چهارم 52

3-6 پیاده سازی سیستم تحویل دارو برای تنضیم فشارخون 53

فصل چهارم الگوریتمهای هم تکاملی هم کارانه 55

4-1 مقدمه 55

4-1-1 مفهوم هم تکاملی در طبیعت 55

4-1-2 الگوریتم های هم تکاملی ( CEAs) 56

4-2 تاریخچه 57

4-3 چرا از الگوریتمهای هم تکاملی استفاده می کنیم؟ 58

4-3-1 فضای جستجوی بزرگ یا نامحدود 59

4-3-2 عدم وجود یا مشکل بودن بیان ریاضی معیار مطلق برای ارزیابی افراد 60

4-3-3 ساختارهای پیچیده و یا خاص 61

4-4 معایب هم تکاملی 62

4-5 طبقه بندی الگوریتم های هم تکاملی 64

4-5-1 ارزیابی 64

4-5-1-1 کیفیت و چگونگی Payoff 66

4-5-1-2 روش های اختصاص برازندگی 66

4-5-1-3 روش های تعامل بین افراد 67

4-5-1-4 تنظیم زمان به هنگام سازی 68

4-5-2 نحوه نمایش 69

4-5-2-1 تجزیه مسأله به اجزای کوچکتر 69

4-5-2-2 توپولوژی فضایی 69

4-5-2-3 ساختار جمعیت 69

4-6 چهارچوب کلی الگوریتم هم تکاملی همکارانه 70

4-7 مقاوم بودن در الگوریتم های هم تکاملی هم کارانه 70

4-8 تئوری بازیهاوتحلیل الگوریتم هم تکاملی براساس مفاهیم تئوری بازی تکاملی 72

4-9 زمینه های کاربرد الگوریتم های هم تکاملی 75

فصل پنجم شبیه سازی ها و نتایج 78

5-1 مقدمه 78

5-2 کنترل بهینه فشارخون حین عمل جراحی توسط الگوریتم ژنتیک 78

5-2-1 شبیه سازی سیستم کنترل اتوماتیک فشارخون با کنترلر PID والگوریتم ژنتیک 79

5-2-1-1 انتخاب مدل ریاضی 79

5-2-1-2 انتخاب کنترلر 80

5-2-1-3 انتخاب تابع برازندگی برای الگوریتم ژنتیک 81

5-2-1-4 اعمال کنترلر و عمل کردن الگوریتم ژنتیک 82

5-2-2 نتایج شبیه سازی 84

5-2-3 پاسخ های حاصل از اجرای برنامه شبیه سازی شده 85

فصل ششم نتیجه گیری و پیشنهادات 88

6-1 نتیجه گیری 88

6-2 پیشنهادات 89

مراجع 90

فهرست شکل ها

عنوان صفحه

شکل 3-1 شمای کلی کنترلر PID 19

شکل 3-2 مثالی از تنظیم پارامترهای کنترلر PID 22

شکل 3-3 پاسخ پله سیستم حلقه باز 23

شکل 3-4 پاسخ پله واحد سیستم حلقه بسته با کنترلر تناسبی 24

شکل 3-5 پاسخ پله واحد سیستم حلقه بسته با کنترلر PD 24

شکل 3-6 پاسخ پله واحد سیستم حلقه بسته با کنترلر PI 25

شکل 3-7 پاسخ پله واحد سیستم حلقه بسته با کنترلر PID 26

شکل 3-8 : تبدیل فنوتیپ ها به ژنوتیپ ها وبالعکس 29

شکل 3-9 نمونه ای از فضای جواب 30

شکل 3-10 نمایش یک کروموزوم n بیتی در پایه عددی m 33

شکل 3-11 عمل برش تک نقطه ای 35

شکل 3-12 : عمل برش چند نقطه ای 35

شکل 3-13 عمل برش یکنواخت 36

شکل 3-14 عمل جهش 37

شکل 3-15 مراحل اجرای الگوریتم ژنتیک 39

شکل 3-16 مدل چرخ رولت 40

شکل 3-17 بلوک دیاگرام سیستم کنترل با کنترلر 53

شکل 4-1 سلسله مراتب طبقه بندی ویژگی های یک الگوریتم هم تکاملی 65

شکل4-2 الگوریتم هم تکاملی هم کارانه ترتیبی خلاصه شده 71

شکل 4-3 ماتریس امتیازدهی 74

شکل 5-1 شمای کلی سیستم 79

شکل 5-2 فلوچارت سیستم کنترل فشارخون 83

شکل 5-3 شبیه سازی کنترلر PID 84

شکل 5-4 شبیه سازی سیستم کنترل فشارخون 84

شکل 5-5 مقدار برازندگی ها در هر نسل 86

شکل 5-6 ضرایب کنترلرPID 86

شکل 5-7 خروجی سیستم در حالتی که فشار از حالت مطلوب بیشتر است 87

شکل 5-8 خروجی سیستم در حالتی که فشار از حد مطلوب کمتر است 87

فهرست جداول

جدول 3-1 اثرات کنترلرهای ، ، 21

جدول 3-2 نمونه ای از عمل جهش 37

جدول 3-3 انتخاب کروموزوم ها با استفاده از مدل چرخ رولت 41

جدول 3-4 محدوده پارامترهای مدل دینامیکی سیستم فشارخون 51

جدول 3-5 مقادیر تعیین شده برای پارامترهای مدل 52

جدول 3-6 مقادیر پارامترهای فرمول رابطه بین تغییرات فشارخون و سرعت تزریق دارو 53

جدول 5-1 انتخاب عدد مناسب برای پارامترهای مدل فشارخون 80



خرید فایل


ادامه مطلب ...

کنترل فرکانس میکروشبکهAC با استفاده از کنترلر PI فازی در مد جزیره ای

کنترل فرکانس میکروشبکهAC با استفاده از کنترلر PI فازی در مد جزیره ای


استفاده از تولیدات پراکنده علیرغم تمام مزایای فراوان مشکلات زیادی را نیز ایجاد می‌کند که یکی از رایج‌ترین آنها ناپایداری فرکانسی است. به این ترتیب که میکرو شبکه به علت دارا بودن واحدهای تولیدی و مصرفی دینامیکی و متغیر با زمان، توازن بار را برهم می‌زند و این اجزاء عمدتا شامل : میکرو توربین بادی ، سلول خورشیدی و بار دینامیکی متغیر می‌باشند. در این پروژه، میکروشبکه ترکیبی از میکرو توربین بادی، الکترولایزر، پیل سوختی، میکرو توربین گازی، سلول خورشیدی و بار دینامیکی متغیر است.بدلیل وجود متغیرهای زیادی که عدم توازن بار را ایجاد می‌کنند و همچنین با توجه به محدودیت‌هایی که واحدهای تولیدی دارند از کنترلر فازی برای میراسازی نوسانات فرکانسی و بهبود کنترل فرکانس بار استفاده شده است. در پروژه ارایه شده، میکروشبکه به صورت پیش فرض در حالت ایزوله از شبکه اصلی در نظر گرفته شده است و برای نشان دادن قابلیت بالای کنترلر فازی در کنترل فرکانس، نتایج شبیه‌سازی کنترلر PI فازی با نتایج بدست آمده از اعمال کنترلر PIسنتی[1]مقایسه شده است.همچنین برای عادلانه بودن مقایسه ضرایب کنترلر PI سنتی با استفاده از الگوریتم اجتماع ذرات(PSO) [2]که بصورت بهینه تنظیم شده مورد استفاده قرار گرفته است. نتایج مقایسه نشان داد که عملکرد کنترلر PI فازی بسیار بهتر و با ضریب اطمینان بالا تری نسبت به کنترلر PIسنتی است. همچنین در این پایان نامه برای نشان دادن مقاوم بودن کنترلر فازی سناریوهایی مانند افزایش و کاهش بار یا تولید شبیه سازی و استفاده شده است. در انتها اثر سیستم الکترولایزر در مواقع اغتشاش توانی بررسی گردیده است و نشان داده شده که الکترولایزر اثر مثبتی در مواقع نامتوازنی بار دارد.لازم به ذکر است که شبیه سازی ها با توجه به این نکته صورت گرفته است که توان تولیدی میکرو توربین نسبت به سایر اجزاء تولید کننده توان در شبکه بالاتر است.

کلید واژه: فرکانس، کنترلر فازی، میکرو شبکه، تولیدات پراکنده


فهرست مطالب:

فصل اول: مقدمه

پیشگفتار.......................... 2

مفاهیم اولیّه میکروشبکه و کاربردهای آن............................................. 5

1-1) مقدمه.................................................................................. 5

1-2) تولید پراکنده................................................................................. 7

1-2-1) مزایای استفاده از واحدهای تولید پراکنده........................................... 8

1-3) میکروشبکه............................................................................................. 8

1-3-1) ساختار کلی میکروشبکه.................................................................. 10

1-3-2) مصرف کننده­ها............................................................................ 11

1-3-3)ذخیره­ساز های انرژی....................................................................................................... 11

1-3-4)کنترل­کننده........................................................................................................................ 12

1-4) مدهای عملکردی میکروشبکه................................................................................................. 13

1-4-1)مد متصل به شبکه اصلی................................................................................................ 13

1-4-2)مد جزیره­ای......................................................................................................................... 14

1-5) ساختار و عناصر میکروشبکه مورد بررسی........................................................................... 15

1-6) کنترل فرکانس در میکروشبکه ............................... 17

1-7) جمع بندی و نتیجه گیری...................................... 18

فصل دوم: مروری بر کارهای گذشته

2-1) کاربرد های پیل سوختی در میکرو شبکه............................................................................ 21

2-2) چالش های کنترل میکروشبکه........................ 23

2-3) مروری بر انواع مدل سازی دینامیکی عناصر موجود در ساختار میکروشبکه.25

2-4) کنترل فرکانس............ 27

فصل سوم: کنترل­کننده­های هوشمند

3-1) مقدمه...................................... 31

3-2) چگونگی سیستم های فازی................... 32

3-3) موارد و چگونگی استفاده از سیستم های فازی................ 39

3-3-1) ماشین شست و شوی فازی....................................................... 40

3-3-2)سیستم های فازی در اتومبیل..................................................................................... 40

3-4)تارخچه مختصری از تئوری و کار بردهای فازی....................... 41

3-5) کنترل فازی و کاربرد آن در میکروشبکه........................... 44

3-6) الگوریتم اجتماع ذرات (PSO)........................................ 45

3-6-1) تابع ارزیابی (یا تابع هدف)............................ 47

3-7) جمع بندی و نتیجه گیری......................................... 48

فصل چهار: کنترل فرکانس در میکروشبکه

4-1) اجزای سیستم میکروشبکه................................... 50

4-2) مدل‌ اجزاء مختلف میکروشبکه و نحوه پیاده‌سازی کنترل کننده فازی........... 51

4-2-1) فرمولاسیون مساله............................................... 51

4-2-2) مدل فرکانسی اجزاء میکروشبکه............. 53

4-2-3) پیاده‌سازی کنترل کننده PI فازی در میکروشبکه....................... 55

4-3)نحوه طراحی والگوریتم حل مسئله به روش PSO......................................... 58

4-4) پیاده سازی الگوریتم PSO برای تعیین ضرایب کنترل کننده PI اعمال شده..... 59

4-5) کنترل کننده PI فازی............................... 60

4-5-1) پیاده‌سازی کنترل‌کننده PI فازی و مقایسه نتایج آن

با کنترل‌کننده PI سنتی...................... 60

4-5-2)طراحی کنترل کننده فازی............................ 61

4-6( نویز سفید........................ 65

فصل پنجم: نتایج شبیه سازی

مقدمه......................................... 69

نتایج شبیه سازی......................... 69

5-1) سیستم مورد مطالعه..................................................................................................................70

5-2) شبیه‌سازی میکروشبکه در حالتهای با کنترل کننده PI فازی و PI سنتی............. 72

5-3) بررسی اثر سیستم الکترولایزر بر روی کنترل فرکانس میکروشبکه.............................76

5 -4) بررسی عملکرد کنترل­کننده فازی در مواقع حذف بخشی از تولید...........................78

نتیجه‌گیری و پیشنهادات.....................................................................................................................81

فهرست مراجع و مآخذ..........................................................................................................................83

علائم و اختصارات.................................................................................................................................... 87

پیوست ها

پیوست الف............................................................................................................................................ 90

پیوست ب.............................................................................................................................................. 95

پیوست پ.............................................................................................................................................. 97


فهرست جداول:

جدول(4-1). پارامترهای مدل میکرو شبکه........................................................................................... 52

جدول(4-2). پارامترهای مدل دینامیکی اجزاء میکرو شبکه.......................................................... 54

جدول(4-3). پارامترهای مدل میکرو شبکه.......................................................................................... 55

جدول(4-4). پارامترهای کنترل کننده کننده فازی بکار برده شده

در میکرو توربین گازی................................................................................................................................. 56

جدول(4-5): حدود پارامترهای کنترل کننده PID............................................................................ 59

جدول(4-6). نتایج الگوریتم بازای تعداد جمعیت n=20 و تعداد تکرار Iteration=20............ 60

جدول (4-7). تعداد MF های هر کدام از متغیرهای ورودی یا خروجی...................................... 63

جدول(4-8): جدول قوانین فازی برای Kp∆........................................................................................ 64

جدول(4-9): جدول قوانین فازی برای KI∆......................................................................................... 64

جدول (5-1): مقادیر توان اجزاء مختلف میکروشبکه در نقطه کار نامی متعادل........................ 72


فهرست اشکال

شکل 1-1) نمایی از یک میکروشبکه ..................................................................................................... 6

شکل 1-2) ساختار و اجزای میکروشبکه............................................................................................... 10

شکل1-3). مد متصل به شبکه................................................................................................................. 13

شکل1-4) مد جزیره­ای............................................................................................................................... 14

شکل 1-5) ساختار میکروشبکه مورد بررسی در این پایان نامه...................................................... 15

شکل 3-1) تابع تعلق مربوط به کلمه "زیاد"....................................................................................... 33

شکل 3-2) تابع تعلق مربوط به کلمه "کم"........................................................................................ 33

شکل 3-3) ساختار اصلی سیستم فازی خالص.................................................................................... 36

شکل3-4) ساختار اصلی سیستم فازی TSK....................................................................................... 37

شکل 3-5) سیستم فازی با فازی ساز و غیرفازی ساز....................................................................... 38

شکل 3-6) سیستم فازی به عنوان کنترل کننده حلقه باز............................................................ 39

شکل 3-7) سیستم فازی به عنوان کنترل کننده حلقه بسته....................................................... 39

شکل3-8)ساختارکلی سیستم فازی........................................................................................................ 45

شکل4-1) سیستم میکروشبکه................................................................................................................ 50

شکل4-2) بلوک دیاگرام اعمال تغییرات توان به کنترل کننده فازی............................................ 56

شکل4-3) میکرو شبکه با حضورکنترل کننده فازی.......................................................................... 57

شکل 4-4) سیستم کنترلی میکروشبکه (Fuzzy PI)....................................................................... 61

شکل 4-5) ورودی‌های کنترل کننده فازی........................................................................................... 62

شکل 4-6) خروجی‌های کنترل کننده PI فازی.................................................................................. 63

شکل 4-7) پیکربندی نویز سفید با پهنای باند محدود....................................................................... 65

شکل 5-1)یکربندی میکروشبکه.............................................................................................................. 70

شکل 5-2)ساختار کنترلی میکروشبکه (Fuzzy PI ، و Well-Tuned PI).................................. 71

شکل5-3)یکر بندی تولید سیگنال تصادفی برای اجزای مختلف میکرو شبکه ......................... 73

شکل5-4) منحنی تغییرات توان برای تمام اجزاء میکرو شبکه .................................................... 74

شکل5-5)تغییرات فرکانس میکروشبکه در سه حالت:

1) با وجود کنترل کننده fuzzy-PI2) کنترل کننده Well-Tuned PI و

3) بدون کنترل کننده............................................................................................................................... 75

شکل5-6) ضریب Kp کنترل کننده فازی.............................................................................................. 75

شکل5-7) ضریب Ki کنترل کننده فازی.............................................................................................. 76

شکل5-8) تغییر بار در زمان t=150s از 50kw به مقدار 75kw : الف ) با استفاده از

الکترولایزر ب) بدون استفاده از الکترولایزر........................................................................................... 77

شکل5-9)منحنی توان میکروشبکه زمان رخداد اضافه بار .............................................................. 78

شکل5-10). توان فوتوولتاییک در لحظه t=150s از توان 10KW به 8KW

تغییر یافته و مجددا در لحظه t=550s به توان 10KW برمی‌گردد................................................ 78

شکل5-11) تغییرات توان الکترولایزر وقتی که توان فتولتاییک در لحظه

t=150s از توان 10KW به 8KW تغییر یافته و مجددا در لحظه t=550s

به توان 10KWبرمی‌گردد.......................................................................................................................... 79

شکل(5-12). تغییرات توان میکروتوربین وقتی که توان فوتوولتاییک در لحظه

t=150s از 10KWبه 8KWتغییر یافته و مجددا در لحظه t=550s

به توان 10KW برمی‌گردد............................................... 79

شکل(5-13). تغییرات فرکانس میکروشبکه وقتی که توان فوتوولتاییک

در لحظه t=150s از 10KW به 8KWتغییر یافته و مجددا در لحظه t=550s

به توان 10KW برمی‌گردد.................................... 80



خرید فایل


ادامه مطلب ...

کنترل اتوماتیک فشارخون با استفاده از کنترلر PID و تنظیم پارامترهای آن توسط الگوریتم ژنتیک

کنترل اتوماتیک فشارخون با استفاده از کنترلر PID و تنظیم پارامترهای آن توسط الگوریتم ژنتیک

فشارخون بالا زمانی ایجاد می شود که فشارخون در دیواره رگ ها بیش از حد معمول بالا رود که این وضعیت بسیار خطرناک است چون گاهی اوقات تاْثیرات مخرب آن در مرور زمان افزایش می یابد ، پس ثابت نگه داشتن سطح فشارخون در حالت نرمال حائز اهمیت است . کنترل PID به دلیل سادگی و مقاوم بودن آن تا کنون در کنترل بسیاری از پروسه های صنعتی مورد استفاده قرار گرفته است. معمولا در کاربردهای صنعتی، پارامترهای کنترلر PID به صورت دستی و با سعی و خطا تنظیم می شود. تنظیم پارامترهای کنترلر به صورت دستی، کارایی آن را به ویژه در شرایطی که زمان اهمیت دارد و نیز در مواردی که پارامترهای پلانت از قبل مشخص نباشد، کاهش می دهد. لذا در سالهای اخیر کار تحقیقاتی زیادی در زمینه تنظیم اتوماتیک پارامترهای کنترلر PID انجام گرفته و از بسیاری از تکنیک های هوشمند مانند الگوریتم های ژنتیک، بهینه سازی انبوه ذرات و ... برای تنظیم پارامترهای این کنترلر استفاده شده است.

در این پایان نامه، از الگوریتم ژنتیک جهت تنظیم پارامترهای کنترلر PID استفاده شده است. تنظیم اتوماتیک پارامترهای کنترلر توسط الگوریتم ژنتیک، دقت و سرعت کنترلر را به طرز قابل توجهی بهبود بخشیده و انعطاف کنترلر را برای برخورد با سیستمهای مختلف افزایش می دهد. کنترلر PID-GA پیشنهادی ، جهت تنظیم نرخ تزریق دارو به منظور کنترل فشار خون بیمار مورد استفاده قرار گرفته است. نتایج شبیه سازی ها نشان می دهد که این کنترلر با دقت و سرعت مناسب، سطح فشار خون بیمار را به حالت نرمال برمی گرداند و تغییر پارامترهای بیمار نیز در کارایی کنترلر تاثیری نخواهد داشت.

واژه های کلیدی : تنظیم اتوماتیک فشارخون ، کنترلر PID ، الگوریتم ژنتیک ، تنظیم پارامترهای کنترلر PID با الگوریتم ژنتیک

فهرست مطالب:

فصل اول مقدمه 1

فصل دوم بیماری فشارخون و روش های درمان پزشکی 4

2-1 مقدمه 4

2-2 تعریف فشار خون 6

2-3 انواع فشار خون 7

2-3-1 علائم 7

2-3-2 تشخیص 8

2-3-3 درمان 8

2-4 افزایش فشار خون 11

2-4-1 شکل فشار خون بدخیم یا تشدید شده 12

2-5 عوارض ناشی از فشار خون بالا

2-5-1 نارسایی قلبی 12

2-5-2 نارسایی کلیه 13

2-5-3 ضعف بینایی 13

2-5-4 سکته مغزی 13

2-5-5 حمله گذرای ایسکمی 14

2-5-6 فراموشی 14

2-5-7 بیماری عروق قلبی 14

2-5-8 سکته (حمله) قلبی 15

2-5-9 بیماری عروق محیطی 15

2-6 شیوه های درمان فشار خون بالا 15

2-7 برخی داروهای پایین آورنده فشار خون 16

فصل سوم استفاده از الگوریتم ژنتیک در تنظیم پارامترهایکنترلر PID 17

3-1 مقدمه 17

3-2 کنترلر PID 18

3-2-1 مقدمه 18

3-2-2 اجزای کنترلر 19

3-2-3 PID پیوسته 20

3-2-4 بهینه سازی کنترلر 20

3-2-5 مشخصات کنترلر های تناسبی-مشتق گیر-انتگرالگیر 21

3-2-6 مثالی از تنظیم پارامترهای کنترلر PID 22

3-2-6-1 کنترل تناسبی 23

3-2-6-2 کنترل تناسبی – مشتق گیر 24

3-2-6-3 کنترل تناسبی – انتگرالی 25

3-2-6-4 اعمال کنترلر PID 26

3-3 الگوریتم ژنتیک 27

3-3-1 مقدمه 27

3-3-2 تاریخچه الگوریتم ژنتیک 28

3-3-3 زمینه های بیولوژیکی 29

3-3-4 فضای جستجو 30

3-3-5 مفاهیم اولیه در الگوریتم ژنتیک 31

3-3-5-1 اصول پایه 31

3-3-5-2 شمای کلی الگوریتم ژنتیک 31

3-3-5-3 کد کردن 32

3-3-5-4 کروموزوم 32

3-3-5-5 جمعیت 33

3-3-5-6 مقدار برازندگی 33

3-3-5-7 عملگر برش 34

3-3-5-8 عملگر جهش 36

3-3-6 مراحل اجرای الگوریتم ژنتیک 38

3-3-7 همگرایی الگوریتم ژنتیک 43

3-3-8 شاخص های عملکرد 44

3-3-8-1 معیارITAE 44

3-3-8-2 معیار IAE 44

3-3-8-3 معیار ISE 44

3-3-8-4 معیار MSE 45

3-4 تنظیم پارامترهای کنترلر PID با استفاده از الگوریتم ژنتیک 45

3-4-1 تاریخچه 46

3-4-2 نحوه تنظیم پارامترهای کنترلر PID با استفاده از الگوریتم ژنتیک 46

3-5 مدل سازی ریاضی سیستم تنظیم فشار خون 47

3-5-1 مقدمه 47

3-5-2 مدل های دینامیکی توسعه داده شده 48

3-5-2-1 مدل اول 48

3-5-2-2 مدل دوم 49

3-5-2-3 مدل سوم 50

3-5-2-4 مدل چهارم 52

3-6 پیاده سازی سیستم تحویل دارو برای تنضیم فشارخون 53

فصل چهارم الگوریتمهای هم تکاملیهم کارانه 55

4-1 مقدمه 55

4-1-1 مفهوم هم تکاملی در طبیعت 55

4-1-2 الگوریتم های هم تکاملی ( CEAs) 56

4-2 تاریخچه 57

4-3 چرا از الگوریتمهای هم تکاملی استفاده می کنیم؟ 58

4-3-1 فضای جستجوی بزرگ یا نامحدود 59

4-3-2 عدم وجود یا مشکل بودن بیان ریاضی معیار مطلق برای ارزیابی افراد 60

4-3-3 ساختارهای پیچیده و یا خاص 61

4-4 معایب هم تکاملی 62

4-5 طبقه بندی الگوریتم های هم تکاملی 64

4-5-1 ارزیابی 64

4-5-1-1 کیفیت و چگونگی Payoff 66

4-5-1-2 روش های اختصاص برازندگی 66

4-5-1-3 روش های تعامل بین افراد 67

4-5-1-4 تنظیم زمان به هنگام سازی 68

4-5-2 نحوه نمایش 69

4-5-2-1 تجزیه مسأله به اجزای کوچکتر 69

4-5-2-2 توپولوژی فضایی 69

4-5-2-3 ساختار جمعیت 69

4-6 چهارچوب کلی الگوریتم هم تکاملی همکارانه 70

4-7 مقاوم بودن در الگوریتم های هم تکاملی هم کارانه 70

4-8 تئوری بازیهاوتحلیل الگوریتم هم تکاملی براساس مفاهیم تئوری بازی تکاملی72

4-9 زمینه های کاربرد الگوریتم های هم تکاملی 75

فصل پنجم شبیه سازی ها و نتایج 78

5-1 مقدمه 78

5-2 کنترل بهینه فشارخون حین عمل جراحی توسط الگوریتم ژنتیک 78

5-2-1 شبیه سازی سیستم کنترل اتوماتیک فشارخون باکنترلر PID والگوریتم ژنتیک 79

5-2-1-1 انتخاب مدل ریاضی 79

5-2-1-2 انتخاب کنترلر 80

5-2-1-3 انتخاب تابع برازندگی برای الگوریتم ژنتیک 81

5-2-1-4 اعمال کنترلر و عمل کردن الگوریتم ژنتیک 82

5-2-2 نتایج شبیه سازی 84

5-2-3 پاسخ های حاصل از اجرای برنامه شبیه سازی شده 85

فصل ششم نتیجه گیری و پیشنهادات 88

6-1 نتیجه گیری 88

6-2 پیشنهادات 89

مراجع 90

فهرست شکل ها

شکل 3-1 شمای کلی کنترلر PID 19

شکل 3-2 مثالی از تنظیم پارامترهای کنترلر PID 22

شکل 3-3 پاسخ پله سیستم حلقه باز 23

شکل 3-4 پاسخ پله واحد سیستم حلقه بسته با کنترلر تناسبی 24

شکل 3-5 پاسخ پله واحد سیستم حلقه بسته با کنترلر PD 24

شکل 3-6 پاسخ پله واحد سیستم حلقه بسته با کنترلر PI 25

شکل 3-7 پاسخ پله واحد سیستم حلقه بسته با کنترلر PID 26

شکل 3-8 : تبدیل فنوتیپ ها به ژنوتیپ ها وبالعکس 29

شکل 3-9 نمونه ای از فضای جواب 30

شکل 3-10 نمایش یک کروموزوم n بیتی در پایه عددی m 33

شکل 3-11 عمل برش تک نقطه ای 35

شکل 3-12 : عمل برش چند نقطه ای 35

شکل 3-13 عمل برش یکنواخت 36

شکل 3-14 عمل جهش 37

شکل 3-15 مراحل اجرای الگوریتم ژنتیک 39

شکل 3-16 مدل چرخ رولت 40

شکل 3-17 بلوک دیاگرام سیستم کنترل با کنترلر 53

شکل 4-1 سلسله مراتب طبقه بندی ویژگی های یک الگوریتم هم تکاملی 65

شکل4-2 الگوریتم هم تکاملی هم کارانه ترتیبی خلاصه شده 71

شکل 4-3 ماتریس امتیازدهی 74

شکل 5-1 شمای کلی سیستم 79

شکل 5-2 فلوچارت سیستم کنترل فشارخون 83

شکل 5-3 شبیه سازی کنترلر PID 84

شکل 5-4 شبیه سازی سیستم کنترل فشارخون 84

شکل 5-5 مقدار برازندگی ها در هر نسل 86

شکل 5-6 ضرایب کنترلرPID 86

شکل 5-7 خروجی سیستم در حالتی که فشار از حالت مطلوب بیشتر است 87

شکل 5-8 خروجی سیستم در حالتی که فشار از حد مطلوب کمتر است 87

فهرست جداول

جدول 3-1 اثرات کنترلرهای ، ، 21

جدول 3-2 نمونه ای از عمل جهش 37

جدول 3-3 انتخاب کروموزوم ها با استفاده از مدل چرخ رولت 41

جدول 3-4 محدوده پارامترهای مدل دینامیکی سیستم فشارخون 51

جدول 3-5 مقادیر تعیین شده برای پارامترهای مدل 52

جدول 3-6 مقادیر پارامترهای فرمول رابطه بین تغییرات فشارخون و سرعت تزریق دارو53

جدول 5-1 انتخاب عدد مناسب برای پارامترهای مدل فشارخون 80



خرید فایل


ادامه مطلب ...

پایان نامه بررسی میکرو کنترلر وقابلیتهای سخت افزاری ونرم افزاری آنavr

              فرمت فایل : word  (قابل ویرایش) تعداد صفحات :94 فهرست مطالب : میکروکنترلر چیست * کلمه میکروکنترلر * حالا چرا این کلمات ؟ * حالا نحوه انجام دادن کار میکروکنترلر را به صورت کلی بررسی میکنیم * ساختمان دخلی میکروکنترلر * تفاوت میکروپروسسور و میکروکنترلر * آیا میکروکنترلر چیز جدیدی را با خود آورده است ؟ * عیب میکروکنترلر * خب حالا این میکروکنترلر را با این همه کاربرد کی ساخته؟ * معایب و مزایای میکروکنترلر های مختلف نسبت به هم * ۱) اول از ۸۰۵۱ که اولین میکروکنترلری بود که به دست بشر ساخته شد شروع میکنیم * ۲) میکروکنترلر PIC * ۳)میکروکنترلر AVR * پروگرام میکروکنترلر * معایب و مزایای میکروکنترلر های مختلف * ۲)میکروکنترلرPIC * AVR Microcontroller Quick Reference Guide * مقدمه ای بر میکروکنترلرهای AVR * بهره های کلیدی AVR * واژ ...


ادامه مطلب ...

پایان نامه بررسی میکرو کنترلر وقابلیتهای سخت افزاری ونرم افزاری آنavr

                فرمت فایل : word   (قابل ویرایش) تعداد صفحات   :94 فهرست مطالب   : میکروکنترلر چیست * کلمه میکروکنترلر * حالا چرا این کلمات ؟ * حالا نحوه انجام دادن کار میکروکنترلر را به صورت کلی بررسی میکنیم * ساختمان دخلی میکروکنترلر * تفاوت میکروپروسسور و میکروکنترلر * آیا میکروکنترلر چیز جدیدی را با خود آورده است ؟ * عیب میکروکنترلر * خب حالا این میکروکنترلر را با این همه کاربرد کی ساخته؟ * معایب و مزایای میکروکنترلر های مختلف نسبت به هم * ۱) اول از ۸۰۵۱ که اولین میکروکنترلری بود که به دست بشر ساخته شد شروع میکنیم * ۲) میکروکنترلر PIC * ۳)میکروکنترلر AVR * پروگرام میکروکنترلر * معایب و مزایای میکروکنترلر های مختلف * ۲)میکروکنترلرPIC * AVR Microcontroller Quick Reference Guide * مقدمه ای بر میکروکنترلرهای AVR * بهره های ...


ادامه مطلب ...

کنترل ربات بوسیله کنترلر انفیس anfis controller for robot

کنترل ربات بوسیله کنترلر انفیس anfis controller for robot   با استفاده از کنترلر فازی عصبی یا انفیس ربات با 2 درجه ازادی را کنترل می کنیم و ربات به نقطه مطلوب می رسد که در این حالت با استفاده از اموزش داده ها و تست داده های خروجی به نتیجه خروجی میرسد. برای اموزش رایگان متلب در تلگرام telegram.me/matlab nevisan فروش پروژه ها و پایان نامه های آماده ارایه رشته های با نرم افرار مهندسی MATLAB     با 50 درصد تخفیف دانشجویان گرامی کنترل چند متغیره فروش پروژه ها و پایان نامه های رشته های مهندسی در تمامی گرایشات و تمامی مقاطع تحصیلی با نرم افرار مهندسی MATLAB با مقالات شبیه سازی شده و گزارش فارسی در رشته های برق -مکانیک –صنایع- کامپیوتر – هوش مصنوعی و..  در گرایشات  قدرت کنترل مخابرات الکترونیک مهندسی پزشکی کنترل فاری کنترل مدرن الگ ...


ادامه مطلب ...

تمرین های کنترلر پیش بین بهمراه مقاله شبیه سازی شده با داده های عددی منایب برای کنترل پیش بین

تمرین های کنترلر پیش بین بهمراه مقاله شبیه سازی شده با داده های عددی منایب برای کنترل پیش بین باا امکان تغییر سیستم مورد نظر می توانیم براحتی برای هر سیستمی کنترلر پیش بین طراحی نمود. telegram.me/matlab nevisan   فروش پروژه ها و پایان نامه های آماده ارایه رشته های با نرم افرار مهندسی MATLAB     با 50 درصد تخفیف دانشجویان گرامی کنترل چند متغیره فروش پروژه ها و پایان نامه های رشته های مهندسی در تمامی گرایشات و تمامی مقاطع تحصیلی با نرم افرار مهندسی MATLAB با مقالات شبیه سازی شده و گزارش فارسی در رشته های برق -مکانیک –صنایع- کامپیوتر – هوش مصنوعی و..  در گرایشات  قدرت کنترل مخابرات الکترونیک مهندسی پزشکی کنترل فاری کنترل مدرن الگوریتم های تکاملی شبکه عصبی انفیس غیرخطی و صد ها موضوعات مناسب برای پروژه و پیان نامه کارشناسی،ارشد، ...


ادامه مطلب ...

پاورپوینت میکرو کنترلر

منظور از یک میکروپروسسور( CPU )، میکروپروسسور هایی از خانواده x86 اینتل مثل 8086 ، 80286 ، 80386 ، 68020 ، 68030 ، 68040 و یا خانواده­هایی از این قبیل است. این میکروپروسسورها فاقد RAM ، ROM و پورتهای I/O در درون خود تراشه هستند 286 ( 1-2MHz ) – 386 ( 4-16MHz ) – 486 ( 16-133MHz ) – 586 ( Pentium ) یک میکروکنترلر دارای یک CPU ( 30MHZ ) به همراه مقدار ثابتی از RAM ، ROM و پورتهای I/O و تایمر در درون خود می باشد البته با استفاده از حافظه جانبی و تر ...


ادامه مطلب ...